63 research outputs found

    Electrical conductivity measurement: a new technique to detect iatrogenic initial pedicle perforation

    Get PDF
    Abstract Pedicle screw fixation has achieved significant popularity amongst spinal surgeons for both single and multi-level spinal fusion. Misplacement and pedicle cortical violation occurs in over 20% of screw placement and can result in potential complications such as dysthesia, paraparesis or paraplegia. There have been many advances in techniques available for navigating through the pedicle; however, these techniques are not without drawbacks. A new electrical conductivity-measuring device, previously evaluated on the porcine model to detect the pedicle violation, was evaluated amongst nine European Hospitals to be used in conjunction with the methods currently used in that centre. This new device is based on two original principles; the device is integrated in the drilling or screwing tool. The technology allows real-time detection of perforation through two independent parameters, impedance variation and evoked muscle contractions. Data was collected twofold. Initially, the surgeon was given the device and a comparison was made between the devices ability to detect a breech and the surgeon's ability to detect one using his traditional methods of pedicle preparation. In the second module of the study, the surgeon was limited to using the electrical conductivity detection device as their sole guide to detect pedicle breaches. A comparison was made between the detection ability of the device and the other detection possibilities. Post-operative fine cut CT scanning was used to detect the pedicle breaches. Overall, the 11 trial surgeons performed a total of 521 pedicle drillings on 97 patients. Initially there were 147 drillings with 23 breaches detected. The detection rate of these breaches were 22/23 for the device compared to 10/23 by the surgeon. Over both parts of the study 64 breaches (12.3%) were confirmed on post-operative CT imaging. The electrical conductivity detection device detected 63 of the 64 breaches (98.4%). There was one false negative and four false positives. This gives the device an overall sensitivity of 98% and specificity of 99% for detecting a pedicle breach. The negative predictive value was 99.8%, with a positive predictive value of 94%. No adverse event was noted with the use of the electrical conductivity device. Electrical conductivity monitoring may provide

    Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report

    Get PDF
    In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained an acute thoracolumbar fracture and were treated by short posterior segment fusion using the AO fixateur interne. Autologous bone marrow (iliac crest) impregnated hydroxyapatite-collagen scaffold was laid on the decorticated posterior elements. Routine implant removal was performed after a mean of 15.3 months (12–20). During this second surgery, fusion mass was assessed visually and manually. A bone biopsy was sent for histological analysis of all four cases. Fusion was confirmed in all four patients intraoperatively and sagittal stress testing confirmed mechanical adequacy of the fusion mass. Three out of the four (cases 2–4) had their implants removed between 12 and 15 months after the index surgery. All their histological cuts showed evidence of newly formed bone and presence of active membranous and/or enchondral ossification foci. The last patient (case 1) underwent implant removal at 20 months and his histological cuts showed mature bone, but no active ossification foci. This four-case report suggests that the fusion mass produced by a mineralized collagen matrix graft soaked in aspirated bone marrow is histologically and mechanically adequate in a thoracolumbar fracture model. A larger patient series and/or randomized controlled studies are warranted to confirm these initial results

    Adenosine induces growth-cone turning of sensory neurons

    Get PDF
    The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system

    Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited

    Get PDF
    Fermentation of glucose to lactate in the presence of sufficient oxygen, known as aerobic glycolysis or Warburg effect, is a universal phenotype of cancer cells. Understanding its origin and role in cellular immortalization and transformation has attracted considerable attention in the recent past. Intriguingly, while we now know that Warburg effect is essential for tumor growth and development, it is thought to arise because of genetic and/or epigenetic changes. In contrast to the above, we propose that Warburg effect can also arise due to normal biochemical fluctuations, independent of genetic and epigenetic changes. Cells that have acquired Warburg effect proliferate rapidly to give rise to a population of heterogeneous progenitors of cancer cells. Such cells also generate more lactate and alter the fitness landscape. This dynamic fitness landscape facilitates evolution of cancer cells from its progenitors, in a fashion analogous to Darwinian evolution. Thus, sporadic cancer can also occur first by the acquisition of Warburg effect, then followed by mutation and selection. The idea proposed here circumvents the inherent difficulties associated with the current understanding of tumorigenesis, and is also consistent with many experimental and epidemiological observations. We discuss this model in the context of epigenetics as originally enunciated by Waddington

    Therapeutic opportunities within the DNA damage response

    Get PDF
    The DNA damage response (DDR) is essential for maintaining the genomic integrity of the cell, and its disruption is one of the hallmarks of cancer. Classically, defects in the DDR have been exploited therapeutically in the treatment of cancer with radiation therapies or genotoxic chemotherapies. More recently, protein components of the DDR systems have been identified as promising avenues for targeted cancer therapeutics. Here, we present an in-depth analysis of the function, role in cancer and therapeutic potential of 450 expert-curated human DDR genes. We discuss the DDR drugs that have been approved by the US Food and Drug Administration (FDA) or that are under clinical investigation. We examine large-scale genomic and expression data for 15 cancers to identify deregulated components of the DDR, and we apply systematic computational analysis to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks

    The twisted survivin connection to angiogenesis

    Get PDF

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF
    corecore