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Abstract

Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis,
metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein
is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of
survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for
survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and
angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt
activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we
elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor
vascularization by vasculogenic mimicry together with conventional angiogenesis.
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Background
Survivin (BIRC5) is a member of the IAP family that
participates in cell division, apoptosis inhibition and
angiogenesis [1–3]. In humans, survivin is widely
expressed in development but generally not present in
adult tissues [4]. However, upon malignant transform-
ation the protein survivin is commonly re-expressed [5]
leading to the promotion of cell survival, proliferation
and metastasis. For these reasons, survivin is considered
a potentially interesting target for cancer therapy [2]. In
tumors, the expression of survivin and VEGF are closely
linked during tumor growth and angiogenesis, and are
detected in several types of cancer [6–9]. In this review,
we will focus predominantly on the role of survivin in
angiogenesis. Recent findings from our group identified
a novel pathway by which survivin promotes VEGF (vas-
cular endothelial growth factor) expression in cancer
cells, hence promoting angiogenesis, a rate-limiting step
in tumor growth. Also, we will elaborate on the rele-
vance of this pathway in the context of hypoxia, reactive
oxygen species (ROS) formation and β-Catenin
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signaling. Finally, we will consider the possibility that
survivin may also be relevant to the process of vasculo-
genic mimicry suggested to occur in regions of tumors
that lack endothelial cell-mediated vascularization.
Survivin and cell survival in hypoxia: hypoxia-induced
factors
Hypoxia
Under normal physiological conditions, cells are sup-
plied with oxygen at concentrations ranging from 1-
13 % O2 depending on the tissue [10, 11]. However,
under pathological conditions, as is the case in cancer,
tissue oxygenation is severely impaired due to insuffi-
cient vascularization resulting in a condition known as
hypoxia [10, 12]. In patients, hypoxia has been reported
in most solid tumors, including prostate [13], pancreas
[14], head and neck [15], breast [16], kidney [17] and
liver cancer [18]. Beyond the immediate responses linked
to lack of oxygen and nutrients, including the induction
of Hypoxia-Induced Factors (HIFs), autophagy and the
unfolded protein response (UPR), tumor hypoxia is also
associated with resistance to chemotherapy, metastasis
and reduced patient survival [19–23]. Unfortunately,
these adaptive mechanisms enable cancer cells to adjust
to low oxygen concentrations, proliferate and ultimately
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disseminate to distant sites. In this review, we will center
the discussion mainly on HIF-related adaptive responses.
In normal tissues, blood vessels are characterized by a

well-defined hierarchical organization and reside in close
proximity of target cells in order to ensure a constant
oxygen and nutrient supply. However, in tumors an im-
balance between oxygen consumption/delivery due to
excessive proliferation results in hypoxia [24], a highly
dynamic process which involves both periods of chronic
and cyclic hypoxia [25]. Several factors contribute to and
exacerbate the hypoxic microenvironment. Typically, the
tumor blood vessels are disorganized, aberrantly
branched and frequently distant from the tumor cells.
Also, the blood vessels are more leaky leading to blood
deviation and increased compensatory blood flow
bypassing tumor blood vessels, thereby reducing oxygen
levels even further. In addition, tumor blood vessels are
characterized by fragile capillary walls and retarded
blood flow, which again accentuates hypoxia [24, 26].
Lower vascular density, inherent limitations in oxygen
diffusion, erythrocyte hardening and increased blood vis-
cosity all contribute to reducing the blood flow, and thus
generating an extravascular hypoxic niche [27].

Cellular adaptation to hypoxia by HIFs
As previously indicated, cellular responses to hypoxia
are complex, and dependent on the severity of hypoxia
and the duration of the stimulus. Under conditions of
hypoxia (O2 0.1 %-5 %), cells adapt by the activation of
the HIF transcription factors that are responsible for
metabolic adaptation, pH control and the neovasculari-
zation process [28]. HIFs are heterodimeric transcription
factors of the bHLH family, comprised of an oxygen-
dependent (α) and a constitutive subunit β [29]. To date,
three oxygen-sensitive isoforms have been described (1α,
2α and 3α) [29–31], of which HIF1α is the best-
described isoform whose expression is more ubiquitous
in comparison to HIF2α or HIF3α [32–34].
In normoxia, prolyl-hydroxylase enzymes (PHDs) hy-

droxylate HIFα on key proline residues that are recog-
nized by the Von Hippel Lindau (VHL) factor, an E3
ubiquitin ligase that promotes proteasomal HIFα deg-
radation [35–37]. Reduced oxygen levels in hypoxia pre-
vent HIFα hydroxylation by PHDs thereby stabilizing
HIFα, which then translocates to the nucleus to form an
heterodimer with HIF1β and bind to the hypoxia-respon-
siveness elements (HRE, core sequence 5´-(A/G) CGTG-
3´) present in the promoter sequence of a large number
of target genes [38–41]. Although both HIF1α and HIF2α
bind to the same HRE promoter sequences, the increase
in expression of specific target genes depends on HIF
interaction with other factors. Thus, HIF target genes are
classified according to their HIF subunit dependence as
HIF1α-, HIF2α- or HIF1α/HIF2α-dependent [42].
Recently, the interactions between HIF1α/STAT3 and
HIF2α/USF2 have been reported to activate the expression
of a unique subset of target genes [43–46]. In addition, the
activation of HIF-associated Factor (HAF), a HIF1α-
specific target gene, permits the transition from HIF1α- to
HIF2α-dependent adaptation processes during prolonged
hypoxia [12, 47]. In general terms, the HIF1α response ap-
pears to be important to trigger adaptive alterations in cel-
lular metabolism [46, 48], while HIF2α-dependent
responses are essential to induce cell proliferation in hyp-
oxia, in a manner dependent on c-myc [49, 50]. In sum-
mary, exposure to hypoxia triggers a highly complex array
of responses that is mediated by different HIFs and the
interaction with additional factors.

HIF1α stabilization due to ROS production
While proline hydroxylases (PHD) have been widely
regarded as the primary oxygen sensors mediating cellu-
lar responses to hypoxia, available evidence indicates
that mitochondria also respond to low oxygen tension,
generating ROS, which then activate intracellular path-
ways to control the expression of several pro-survival
genes [51]. Indeed, chronic treatment of Hep3B cells
with ethidium bromide was shown to generate
respiration-deficient p0 cells lacking functional mito-
chondria and, using this model, the authors then showed
that mitochondria-dependent signaling processes involv-
ing ROS are required in hypoxia to promote HIF1α
stabilization. In addition, mitochondrial ROS were found
to be necessary for both HIF1α-DNA binding and the
induction of HIF1α-mediated expression of Erythropoi-
etin (EPO), VEGF, as well as glycolytic enzymes [52].
Furthermore, mitochondria-derived ROS are not only
required, but are also sufficient to initiate HIF1α
stabilization during hypoxia, and this effect requires an
active mitochondrial complex III [38, 53, 54]. Import-
antly, ROS released into the cytosol from mitochondria
stabilize not only HIF1α, but also HIF2α [53]. Thus,
mitochondrial ROS plays an important role in HIFα
stabilization and target gene expression in hypoxia.
In addition, HIF1α may also be stabilized in normoxia

due to increased ROS production [38]. Importantly, ROS
formation, ROS-dependent HIF1α stabilization and in-
creased VEGF levels have been observed under nor-
moxic conditions in hepatoma, lung carcinoma and
osteosarcoma cell lines. Moreover, reduced activity of
mitochondrial complex II (succinate-ubiquinone oxido-
reductase, Sdh) due to diminished activity of the B sub-
unit (ShdB) in such cells, favors tumor cell growth in a
HIF1α-dependent manner [55]. Although it is broadly
accepted that ROS can modulate HIF1α activity, often
the source(s) of ROS and/or the mechanism(s) leading
to ROS generation remain controversial. However, it has
become increasingly clear that ROS modulate the rate of
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HIF1α hydroxylation [56]. A possible mechanism to ex-
plain these observations includes direct inhibition of
PHD or effects of ROS on the levels of ascorbate, Fe(II)
or Krebs cycle (TCA) intermediates [57, 58]. Indeed,
ROS are not the only modulators of PHD activity. Mul-
tiple mitochondrial products, including TCA cycle inter-
mediates, have been shown to favor HIF1α stabilization
and cellular responses similar to those observed upon
O2 depletion [37, 59] For instance, an increase in succin-
ate levels in the absence of ROS in HEK cells leads to
HIF1α stabilization and increased VEGF mRNA levels
by PHD inhibition in normoxia [60]. Also, Pollard et al
provided in vivo evidence to support the notion that in-
creased succinate and/or fumarate stabilize HIF1α, pos-
sibly through the inhibition of PHD [61].
As tumors develop, tumor cells become increasingly

oxygen deprived and need to reprogram their metabol-
ism to adapt. This is achieved initially by decreasing the
aerobic respiration rate and increasing glycolytic activity.
In this case, increased ROS levels, generated by mito-
chondrial complex III, stabilize HIF1α via oxidation/in-
activation of PHD [62]. Beyond mediating the initial
steps in tumor cell adaptation to the hypoxic environ-
ment of a growing tumor, ROS formation has also been
linked to tumor cell aggressiveness. For instance, Ishi-
kawa et al evaluated the contribution of mutations in
mitochondrial DNA to metastasis. Using the cybrid
technology, they replaced mitochondrial DNA from a
cell line with low–metastatic potential by donor mito-
chondrial DNA from a highly metastatic mouse cell line.
Mitochondrial DNA from metastatic cell lines contains
mutations, which result in a Complex I-deficient cell
with increased ROS production. This exchange of mito-
chondrial DNA was sufficient to induce a metastatic
phenotype in recipient cells, via ROS formation with ele-
vated HIF1α and VEGF production [63]. Taken together,
these observations point towards the existence of an in-
tricate connection between mitochondrial function/ROS
levels and HIF1α activation in cancer.
Moreover, it is well established that hypoxia is asso-

ciated with resistance to chemotherapy. Recently,
hypoxia-driven ROS were shown to trigger a biphasic,
redox-dependent response that protects cells against
etoposide-induced apoptosis. In this case, both mito-
chondrial- (mtROS) and NADPH oxidase-derived
ROS (noxROS) cooperate in HIF1α stabilization,
VEGF expression and cell survival. Furthermore, the
authors proposed the existence of a VEGF-dependent
autocrine loop that results in redox-mediated, pro-
longed stabilization of HIF1α [64].
Mitochondrial ROS seem to play a dual role in hyp-

oxia signaling related to malignancy in tumors. Hypoxia
(5 % O2) generates mROS, which activate both NF-κB
through c-Src-mediated phosphorylation of IκB-α on
tyrosine residues, and stabilizes HIF1α - and increases
VEGF expression. These events promote carcinogenesis
by the induction of survival pathways that protect cells
in the face of DNA damage and permit tumor progres-
sion [58, 65]. Moreover, recently the combined treat-
ment using S13, a Src-specific tyrosine kinase inhibitor,
together with paclitaxel, dramatically reduced prostate
cancer tumor growth. This effect was attributed to a re-
duction in ROS production, HIF1α stabilization and de
novo formation of blood vessels [66]. These findings in-
dicate that ROS favor tumor progression by activating
HIF1α and increasing VEGF expression.

ROS and angiogenesis
Angiogenesis is characterized by the sprouting of new
blood vessels from the pre-existing vasculature and is trig-
gered by pro-angiogenic factors, such as fibroblast growth
factor (FGF), platelet derived growth factor (PDGF), epi-
dermal growth factor (EGF), hepatocyte growth factor
(HGF), Angiopoietins (Ang1, Ang2), TIE1 and TIE2,
Ephrins, Neuropeptide Y and the previously mentioned
VEGF. This latter family represents the best-characterized
group of endothelial growth factors to date [67].
A close relationship exists between angiogenesis and

oxidative stress in both physiological and pathological
settings [68]. ROS are key mediators of this process that
may be produced as a side product of the mitochondrial
electron transport reaction, the activation of NADPH
oxidases or upon exposure to cytotoxic drugs. ROS are
commonly employed in many physiological processes in
the cell and thus cannot be considered toxic a priori;
however, when produced in excess, the oxidative stress
generated in cells can contribute to pathological devel-
opment. Generation of intracellular ROS is associated
with VEGF-dependent signaling in endothelial cells [69].
Importantly, tumor growth is strongly dependent on
angiogenesis and in the tumor microenvironment, ROS
generated by NADPH oxidases increase VEGF secretion
in a HIF1α-dependent manner [70]. Also, inflammatory
mechanisms are strongly linked to ROS production and
angiogenesis. In the wound healing process, neutrophils
and macrophages release ROS, which in turn promote
VEGF release [71]. Interestingly, in vitro stimulation of
angiogenesis has been observed in bovine thoracic aorta
exposed to hydrogen peroxide to promote mild oxidative
stress [72]. Moreover, it has been suggested that tumor
cells promote angiogenesis by releasing large amounts of
hydrogen peroxide [73]. The hypothesis that oxidative
stress is an important inducer of angiogenesis is further
supported by evidence showing that anti-oxidants inhibit
angiogenesis. For instance, leptin, a circulating hormone
secreted principally by adipocytes, promotes angiogenesis
by enhancing VEGF production, while N-acetylcysteine
(NAC) blocks leptin-induced VEGF transcription in
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microvascular endothelial cells [74]. Likewise, diphenylio-
donium and apocinin (a NADPH oxidase inhibitor), man-
nitol and catalase and other radical scavengers, have all
been shown to inhibit angiogenesis [75–77]. Furthermore,
vascularization in melanomas is inhibited by over-
expressing extracellular superoxide dismutase (SOD) [78].
On the other hand, mice lacking NADPH oxidase 2 dis-
play impaired VEGF-induced angiogenesis and neovascu-
larization following hind limb ischemia [79].
The VEGF pathway is modulated by ROS and oxida-

tive stress stimulates VEGF production in several cell
types, including endothelial cells, smooth muscle cells
and macrophages [68]. ROS enhance angiogenesis by in-
creasing HIF1α, as well as the expression and activity of
VEGF receptor-2 (VEGFR2) [69, 70, 80]. This ROS-
VEGF connection becomes even more complex when
considering that VEGF promotes cell migration and pro-
liferation by increasing intracellular levels of ROS [81].
However, it should be noted that oxidative stress also in-
duces angiogenesis in a VEGF-independent manner by
phospholipid oxidization, generating metabolites that act
either as ligands or by inducing post-translational modi-
fications (eg. ω-carboxyalkylpirrole: CAP) of proteins
within angiogenic signaling pathways. Relevant examples
Fig. 1 Oxidative stress and angiogenesis. The two main sources of oxidativ
angiogenesis in two different ways, either by VEGF-related or VEGF-indepen
include the Toll like receptor (TLR)2/MyD88 [82] and
NFκB activation [83] pathways (Fig. 1).
In summary, the discussion so far of a considerable

body of evidence has revealed the existence of an intri-
cate and complex connection between oxidative stress
and angiogenesis. The following sections, will focus on
highlighting how survivin fits into this already complex
picture.

Survivin
In endothelial cells, the principal targets of HIF-
dependent, pro-angiogenic responses are VEGF-A and
Survivin [2, 84, 85]. Survivin, also called baculoviral in-
hibitor of apoptosis repeat-containing 5 (BIRC5), is a
member of the inhibitor of apoptosis (IAP) family whose
expression greatly favors tumor cell survival through ac-
tivation of multiple pathways (see Lladser et al [2]). HIF
activation in hypoxia triggers different strategies to aid
in promoting tumor cell survival. While, VEGF-A is con-
trolled by both HIF1α and HIF2α, survivin expression is
solely dependent on HIF1α activation [45, 86–88].
Survivin is widely expressed in fetal development, but

generally then becomes undetectable in normal adult tis-
sues [4], although there are notable exceptions, as is the
e stress, mitochondria and NADPH oxidases, generate ROS that trigger
dent pathways – see main text for details. TLR: Toll Like Receptor
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case for the gastric mucosa [89]. Importantly, however,
survivin is commonly re-expressed in human tumors
and is required for cancer cell survival [2, 5]. Suppres-
sion of apoptosis is a hallmark of the cancer cell that
typically becomes genetically unstable, highly prolifera-
tive, and resistant to therapy [90]. Survivin, has emerged
as a central player in this context due its roles in prolif-
eration, inhibition of apoptosis, metastasis and angiogen-
esis [1–3, 91]. In hypoxia, HIF1α-targeting reduces
survivin expression, thereby compromising cell viability.
For instance, inhibition of HIF1α by Echinomycin re-
duces survivin expression and sensitizes multiple mye-
loma cells to melphalan-induced apoptosis [92]. In
addition, miRNA-mediated HIF1α knockdown reduces
survivin expression and induces cell death, while survi-
vin overexpression prevents apoptosis in A549 lung can-
cer cells [93]. Furthermore, shRNA-mediated targeting
of HIF1α reduces survivin mRNA and protein expres-
sion in the SW480 colon cancer cell line, thereby in-
creasing the apoptotic index and reducing in vivo tumor
growth [94]. Finally, in the gastric cancer cell lines
SGC7901 and BGC823, survivin is upregulated in an
AKT/HIF1α dependent manner, and promotes resistance
to cisplatin [95]. Taken together, these findings strongly
Fig. 2 The Survivin/VEGF connection in angiogenesis. Tumor cells overexpres
dependent manner. Liberated VEGF may act on endothelial cells promoting a
in tumors with few endothelial cells, survivin-induced VEGF synthesis/release
suggest that survivin expression is a downstream target
of HIF1α and importantly, that survivin function is re-
quired to maintain cell viability in hypoxia. Thus,
HIF1α-dependent transcription of survivin may mediate
cell survival under the low oxygen conditions commonly
associated with tumor growth. In addition, we envisage
that increased survivin expression may contribute to
VEGF synthesis in hypoxia in a manner dependent on
VEGF-A up-regulation by HIF1α and HIF2α. Specific-
ally, as indicated in the schematic (see Fig. 2), recent
studies show that the production of VEGF in tumor cells
is connected to survivin expression via PI3K/Akt-
dependent activation of β-catenin/Tcf-Lef-mediated
VEGF transcription [3], as is described below.

Survivin and oxidative stress
Survivin overexpression in human cancers is also associ-
ated with drug resistance and, interestingly, in some
cases resistance to oxidative stress. As referred to previ-
ously, ROS can induce HIF1α stabilization and increase
VEGF expression; however, there are no reports linking
survivin overexpression to ROS-dependent HIF1α
stabilization. Alternatively, evidence for a negative cor-
relation between ROS, VEGF production and survivin
sing Survivin induce VEGF synthesis/release in a β-catenin signaling-
ngiogenesis together with endothelial cell secreted VEGF. Alternatively,
may promote vasculogenic-mimicry. For details, see main text
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expression is available. For instance, reduced tumor cell
survival has been observed using treatments with 2-
cyano-3,12-dioxooleana-1,9-dien-28-oic acid (a synthetic
triterpenoid and PPARγ ligand) and its methyl ester
[96, 97] together with pro-oxidant concentrations of
ascorbic acid (5 mM) [98]. This combination was
shown to induce the formation of ROS that, via
miRNA induction, suppress Sp-transcription factors
leading to a reduction in survivin and VEGF expres-
sion. This may be taken to indicate that Survivin/
VEGF induction by ROS is strongly dependent on the
amount of ROS generated. An excess in ROS produc-
tion may lead to cell death by reduction of Survivin/
VEGF expression. Alternatively, oxidative stress in-
duced by phototherapy can lead to a rapid upregula-
tion of inducible nitric oxide synthase (iNOS), which,
in turn, promotes a notable increase in survivin ex-
pression as part of a protective response in breast
cancer cells [99]. On the other hand, oxidative stress
also triggers anti-tumor effects by the down-
regulation of anti-apoptotic proteins, such as survivin.
Resistance to oxidative stress greatly favors tumor cell
survival given that tumors are known to produce
large amounts of ROS [73], which contribute to
tumor progression by enhancing genetic instability
[100]. For instance human hepatoma cells undergo
apoptosis In a ROS-dependent manner, when treated with
the NF-κB inhibitor dehydroxymethyl-epoxyquinomicin
(DHMEQ), due to down-regulation of BCL2, Mcl-1 and
survivin [101]. Furthermore, a number of studies correlate
pro-oxidant cytotoxic effects of compounds with survivin
down-regulation, or, alternatively protective effects against
oxidative stress with increased levels of survivin, support-
ing the idea that survivin contributes significantly to pro-
tection against pro-apoptotic oxidative stress [102–104].
On the other hand, oxidative stress may induce apoptosis
through survivin down-regulation. As an example, Zinc
oxide nanoparticles have been shown to induce oxidative
stress in human alveolar adenocarcinoma, and this is
linked to the down-regulation of survivin and anti-
apoptotic proteins [105].
Helicobacter pylori (Hp), a pathogen associated with

the development of gastric cancer is known to generate
oxidative stress upon infection. Recently, Hp-induced
gastritis and damage to the gastric epithelium was linked
to loss of survivin expression in the gastric mucosa. Im-
portantly, both loss of survivin and gastric cell line via-
bility was shown to involve enhanced protein
degradation via a ROS/Fe-dependent pathway [89, 106].
Taken together, these observations favor the notion that
survivin acts as a resistance factor to oxidative stress-
induced apoptosis. Furthermore, loss of survivin renders
both normal and tumor cells vulnerable to cell death
promoting signals.
Thus, although many details remain to be defined, our
current understanding of the connections between ROS,
HIF1α, VEGF and Survivin point towards the latter is a
key point of convergence and a crucial component in
determining tumor growth, progression, metastasis and
drug resistance.

The up-regulation of VEGF and survivin in cancer
VEGF is required for neo-vascularization under physio-
logical conditions and is fundamental during tumor for-
mation, proliferation and metastasis [85, 107, 108]. The
co-expression of VEGF and survivin has been reported
in many types of cancer, including small-cell lung [6],
bladder [7], thyroid [8] and nasopharyngeal [9] carcin-
omas. Accordingly, drugs that antagonize VEGFR func-
tion reduce angiogenesis and tumor growth, as well as
sensitize cells to apoptosis [109], and therefore hold
great therapeutic promise for cancer treatment [110].
Interestingly, the anti-apoptotic effects of VEGF are dir-
ectly associated with the activation of pro-survival sig-
naling pathways [111]. For instance, anti-apoptotic
genes, such as survivin and bcl-2, are upregulated in
endothelial cells via β-catenin/Tcf-Lef activation follow-
ing VEGF treatment in vitro [112]. Furthermore,
MAPK/ERK activation by VEGF protects endothelial
cells against ceramide-induced death [113]. While hyp-
oxia and subsequently HIF1α stabilization are main fac-
tors in VEGF production, other signaling pathways also
induce this pro-angiogenic protein. For instance, ische-
mic pre-conditioning leads to cardioprotection through
VEGF, survivin and bcl-2 by activating the β-catenin/
Tcf-Lef signaling pathway [114, 115].
The apparent correlation between VEGF and survivin

expression in cancer can be explained by the fact that
VEGF induces survivin transcription. Survivin expres-
sion is controlled at the transcriptional and post-
transcriptional level [116, 117], through the PI3K
[118–120], mTOR [121], Ras [122] (79), AMPK [123]
and Bcl-2/ERK [124] pathways. Extracellular stimuli
that activate these pathways include VEGF, EGF, and
cytokines [125]. Accordingly, the control of survivin
can be attributed to the regulation of a large variety
of transcription factors, including p53 [126], STAT3
[127–129], PTEN [130], NF-κB [131, 132], KLF4
[133], KLF5 [134], EGR-1 [135], E2F-1 [136], SP-1
and SP-3 [137], FOXO1 [138], HIF1α [87] and β-
catenin/Tcf-Lef [139].
As eluded to before, survivin protects cancer cells in

the face of pro-apoptotic stimuli. Moreover, down-
regulation of survivin correlates with lower levels of
VEGF [140] and reduced angiogenesis [107, 141] in can-
cer cells. Furthermore, in vivo studies in the zebrafish
have confirmed that loss of survivin expression impairs
angiogenesis, leading to developmental complications.
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Interestingly, in this model the authors showed that this
defective phenotype could be rescued by VEGF treat-
ment [142, 143], demonstrating thereby in vivo the rele-
vance of this link between survivin, VEGF and
angiogenesis. Consistent with this interpretation, survi-
vin overexpression augments the secretion of pro-
angiogenic molecules, such as VEGF and bFGF, and pro-
motes angiogenesis in glioma cells in vitro and in vivo
[144] or in skin flaps [145]. The molecular mechanisms
implicated in this process are discussed below.
In transcriptional regulation, survivin overexpression

increases the phosphorylation state and activation of
proteins, including the transcriptional factors Sp1 and c-
Myc [146]. Additionally, it has been demonstrated that
survivin overexpression activates PI3K/AKT signaling
and subsequent β-catenin/Tcf-Lef-dependent transcrip-
tion, which increases the expression of VEGF, among
other transcriptional target genes [3]. Importantly,
survivin-targeting by a shRNA or inhibition of PI3K/Akt
reduces β-Catenin/TCF-Lef transcriptional activation,
indicating that survivin modulates β-Catenin/TCF-Lef
activity via a PI3K/Akt-dependent pathway. In vivo,
down-regulation of survivin was shown to reduce the
microvessel density and VEGF expression in B16F10 tu-
mors. Taken together, the data suggest that survivin
overexpression in tumor cells promotes angiogenesis by
PI3K/Akt-mediated activation of β-Catenin/TCF-Lef-
dependent VEGF transcription.
Survivin has also been reported to regulate protein ex-

pression at the post-transcriptional level via its ability to
reduce caspase activity. As an example, may it suffice to
say that survivin enhances p53 degradation by inhibiting
the caspase-dependent cleavage of Mdm2 and thereby
modulating a cell-cycle checkpoint [147]. During the
process of mitosis, survivin enhances the activity of the
Aurora B kinase by stabilizing the chromosomal passen-
ger protein Aurora B [146, 148]. The deregulation of the
Aurora complex may lead to unequal distribution of
genetic information and thus contribute to the aneu-
ploidy observed in cancer cells. Beyond modulating cas-
pase activity, a study evaluating survivin binding
partners revealed that 18 % of the estimated interactions
occurred with kinases [116], and particularly the down-
regulation or inhibition of Aurora B kinase was directly
associated with reduced PI3K/AKT phosphorylation
[149, 150]. This observation raises the specter that survi-
vin may activate PI3K/Akt-β catenin signaling by stabil-
izing Aurora B. Furthermore, other reports directly link
PI3K/Akt to β-catenin signaling by GSK3β phosphoryl-
ation/inhibition and β-catenin stabilization [151–154].
Additionally, a positive feedback loop between β-
catenin/Tcf-Lef target genes was also observed for COX-
2, where PGE2 regulated survivin expression in hepato-
cellular and colon carcinoma cells through the EP
receptors via the EGFR/PI3K and Gs-axin/β-catenin sig-
naling pathways, respectively [155–157].
These observations can be taken to suggest that

survivin-mediated Aurora B stabilization combined with
a subsequent positive amplification loop mechanism in-
volving PI3K activation may favor β-catenin TCF/Lef
activation and VEGF synthesis. However, further experi-
ments are required to corroborate this intriguing
possibility.

A potential role for survivin in vasculogenic mimicry?
While angiogenesis has long been accepted as a neces-
sity for tumor growth, in the last decade there have been
observations indicating that tumors can continue to
grow with limited vasculature. The mechanism behind
this survival is speculated to be the process of vasculo-
genic mimicry [158, 159]. The phenomenon of vasculo-
genic mimicry describes the formation of tubular
structures within the tumor that are of cancer cell origin
and thus independent of endothelial cells. As with angio-
genesis, an underlying mechanism of induction of vascu-
logenic mimicry seems to be hypoxia. Unsurprisingly,
given the similarities with angiogenesis, genes imple-
mented in vasculogenic mimicry are those previously as-
sociated with vascular (VE-cadherin), embryonic (Nodal,
Notch4), and hypoxia-related (hypoxia-inducible factor,
Twist1) signaling pathways [160]. VEGF and its receptor
VEGFR type 2 (also called KDR, Flk-1), have been impli-
cated in vasculogenic mimicry [161, 162]. Expression of
the ανβ5 integrin also correlated with vasculogenic mim-
icry and highly aggressive melanoma [163]. Ovarian tu-
mors exhibiting vasculogenic mimicry demonstrated
higher expression of β-catenin and VEGF [164]. In hepa-
tocellular carcinoma cells, VEGF-induced vasculogenic
mimicry is also reported to involve Myocyte Enhancer
Factor 2C (MEF2C) together with β-catenin via the p38
MAPK and PKC signaling pathways [165]. The search
for the exact mechanisms and the unique pathways in-
volved in the process is still very much in its infancy
[166]; however, as survivin is overexpressed in almost all
human cancers [2] it remains to be determined whether
survivin participates in tumor cell mediated vasculogenic
mimicry. Indeed, some available evidence suggests that
survivin could play a role in this process. First, vascu-
logenic mimicry is known to be associated with
higher β-catenin and VEGF expression [164]. Second,
tumor hypoxia accelerates the vasculogenic mimicry
process [167] and both Survivin and VEGF expression
are upregulated by HIFs in hypoxia [6, 45, 87, 88].
Furthermore, in ovarian cancer, hypoxia has been
shown to promote vasculogenic mimicry formation by
inducing epithelial-mesenchymal transition (EMT)
[167]. The relationship between vasculogenic mimicry
and EMT has been reported in numerous cancer
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types including glioma, liver, head and neck, and
stomach cancer [168–172]. Further suggesting a role
for survivin, the upregulation of survivin and the in-
duction of EMT has been widely reported in both
cellular physiology and cancer, as shown in human
retinal pigment epithelial cells and in glioblastoma,
among many other cell models [173, 174].
Survivin is also reported to be involved in the interplay

between CD31 and VE-Cadherin, both implicated in vas-
culogenic mimicry. In esophageal carcinoma cells,
knock-down of HIF1α inhibited vasculogenic mimicry
and HIF1α was shown to upregulate VE-cadherin ex-
pression [175].
Evidence is also present connecting CD31, VE-

Cadherin, β-catenin and survivin in physiological pro-
cesses. The endothelial cells of CD31 knock-out mice
possess reduced VE-cadherin expression with a corre-
sponding increase in levels of survivin [176]. In accord-
ance, confluence and VE-cadherin and β-catenin are
reported to negatively regulate the synthesis of survivin
in endothelial cells. Using β-catenin null and positive
isogenic endothelial cell lines this down-regulation of
survivin has been shown to require β-catenin [177].
Moreover, survivin promotes VEGF synthesis/secretion
by tumor cells, thereby favoring angiogenesis [3]. Bear-
ing in mind these observations, one may speculate that
in poorly vascularized tumor regions, survivin-mediated
VEGF synthesis and/or HIF1α mediated survivin and
VEGF expression could promote vasculogenic mimicry
and thus favor tumor survival (see Fig. 2).

Survivin expression in human cancers
As eluded to, Survivin plays multiple pleiotropic roles
that are important for cancer development and progres-
sion. Survivin participates in the cell division process
[178–180], protects against cell death via prevention of
SMAC/DIABLO release [2] and promotes angiogenesis
[3]. Also, survivin participates in the maintenance stem-
ness and promotes cell motility, as well as metastasis
[181]. In conjunction, these survivin functions strongly
contribute to tumor development, progression and me-
tastasis. This is particularly relevant given that survivin
is considered a specific Tumor-Associated-Antigen
(TAA) because the protein is overexpressed in most hu-
man cancers, but essentially absent in the respective
normal tissues, although exceptions do exist [2, 89].
In a meta-analysis including 2703 patients with non-

small cell lung cancer (NSCLC), survivin expression was
identified as a factor indicative of poorer prognosis in
advanced stages of NSCLC (stages III-IV) rather than
early stages (I-II) [182]. In a meta-analysis involving
1365 gastric cancer patients, survivin expression was as-
sociated with worse overall survival. Specifically, cyto-
plasmic, but not nuclear, survivin expression was linked
to a poorer prognosis for those patients. Hence, not only
expression per se, but also the subcellular localization of
survivin appears to be important in gastric cancer sur-
vival [183].
However, survivin expression is not necessarily always

bad. In a study with 60 ovarian cancer patients at ad-
vanced stages (stages IIIC, IV FIGO classification) of dis-
ease, survivin and p53 expression were analyzed before
and after neoadjuvant chemotherapy [184]. Nuclear sur-
vivin expression was detected in almost 60 % of patients
before treatment, and after neoadjuvant chemotherapy,
nuclear survivin expression was reduced. Furthermore,
elevated nuclear survivin expression was identified as a
favorable prognostic marker in patients treated with
neoadjuvant chemotherapy. The median overall survival
for p53 positive patients with higher expression of
nuclear survivin was 34.6 months, compared to
22.2 months for those patients with lower nuclear
survivin expression [184]. These observations impli-
cate nuclear survivin expression as a favorable prog-
nostic marker for chemotherapy in patients with
advanced ovarian cancer [184]. This will become im-
portant subsequently due to the relevance of angio-
genesis in ovarian cancer progression [185, 186], and
the increase in vasculogenic mimicry detected in
ovarian cancer patients [1, 105].
For the reasons mentioned, there has been great inter-

est in developing approaches that seek to reduce survi-
vin expression in order to limit cancer cell growth, as
will be eluded to in the subsequent section. However, as
the previous paragraph indicates, survivin expression,
particularly in the nucleus, can also be beneficial to pa-
tients, thus complicating the expected outcome of such
treatments.

Survivin as a target in cancer therapy
Survivin is a member of the IAP family, of which several
members are deregulated in human cancers, including
solid tumors and hematological malignancies [90, 187–
189]. Consistent with these observations, targeting other
IAPs in combination with cytotoxic drugs has been sug-
gested as a treatment for hematological malignancies
[188]. However, strategies focusing on survivin are gen-
erally favored over the targeting of other IAPs because
survivin expression is fairly specific, although not exclu-
sive to tumor cells and because survivin displays charac-
teristics of a nodal protein by participating in a great
variety of pathways and processes that favor tumor cell
development [90]. For precisely these reasons, survivin
has been widely exploited as a pharmacological target in
cancer (Table 1). Multiple strategies are currently being
evaluated in clinical trials, including the use of survivin
inhibitors and the development of survivin-based vac-
cines (Table 1).



Table 1 Clinical trials targeting survivin in cancer

Strategy Pathology Phase Clinical trials
identifier

Survivin inhibitors

YM155 (survivin suppressor) together with Paclitaxel and carboplatin Solid tumors and advanced
non-small cell lung carcinoma

I/II NCT01100931

Terameprocol (EM1421), inhibitor of survivin and cdc2 (cyclin-dependent
kinase-1) in continuous intravenous infusion

Refractory Solid tumors I NCT00664586

EZN-3042, a locked nucleic acid antisense oligonucleotide Acute Lymphoblastic Leukemia I NCT01186328

Terameprocol (EM-1421), inhibitor of survivin and cdc2 (cyclin-dependent kinase-1) Leukemia I NCT00664677

EZN-3042, a survivin-targeted mRNA antagonist, alone or in combination with
standard chemotherapy

Acute Lymphoblastic Leukemia I NCT01186328

LY2181308, an antisense oligonucleotid, targeted against survivin mRNA in
combination with idarubicin and cytarabine

Acute Myeloid Leukemia II NCT00620321

Survivin-based Cellular Therapy

Dendritic cell vaccine (mRNA from PSA, PAP, survivin and hTERT) plus docetaxel
or docetaxel alone

Prostate Cancer (castration
resistant and metastatic)

II NCT01446731

Dendritic cells - transfected with hTERT-, survivin- and tumor cell derived
mRNA + ex vivo T cell expansion and reinfusion

Melanoma I/II NCT00961844

Drug: Temozolomide

Procure®, denditric cells loaded with Survivin-peptide and Telomerase mRNA Ovarian Cancer I NCT01456065

Dendritic cell loaded with amplified ovarian cancer stem cell mRNA,
hTERT/survivin mRNA

Ovarian Cancer I/II NCT01334047

Cell therapy based on dendritic cells transfected with Survivin, hTERT and p53
mRNA

Metastatic breast cancer I NCT00978913

Malignant melanoma

TAA-SPECIFIC CTLs targeting survivin, PRAME, NY-ESO-1, MAGEA4 and SSX Solid Tumors (TACTASOM) I NCT02239861

Treatment with autologous dendritic cells transfected with Survivin, MelanA and
MAGE-A3 mRNA or loaded with MAGE-A3, MelanA and Survivin

Melanoma I/II NCT00074230

Cell therapy with cytotoxic T lymphocytes exposed to tumor associated antigens:
NY-ESO-1, MAGEA4, PRAME, Survivin and SSX.

Hodgkin or Non-Hodgkin
Lymphoma

I NCT01333046

TAA-CTLs may be generated from donors or recipients and will be tested for
specificity against 4 tumor antigens commonly found in hematological
malignancies (WT1, PRAME, SURVIVIN, and MAGE-A3).

I NCT02203903

Hematological

Malignancies

Dendritic cell vaccine (MUC-1 and survivin) in combination with cytokine-induced
killer cells

Soft Tissue Sarcoma I/II NCT01898663

Dendritic cell vaccine (MUC-1 and survivin) in combination with cytokine-induced
killer cells

Renal Cell Carcinoma I/II NCT01924156

Autologous dendritic cell vaccine (peptides from survivin and telomerase) Renal Cell Carcinoma I/II NCT00197860

Multiple antigen specific cellular therapy: autologous T cytotoxic cells induced
by dendritic cells (loaded with p53, her2, survivin and a total of 17 antigens)

Hepatocellular Carcinoma I/II NCT02026362

Vaccine therapy (p53, survivin and telomerase) with autologous dendritic cells
in combination with adjuvant cytokines

Advanced Melanoma I/II NCT00197912

Multiple tumor-associated antigen (TAA)-specific T cells (against WT1, PRAME and
survivin) from donors

Acute Lymphoblastic Leukemia I NCT02475707

Multiple tumor-associated antigen (TAA)-specific T cells (against WT1, NY-ESO-1,
PRAME and survivin) from donors

Acute Lymphoblastic Leukemia/
Myelodisplasic Syndrome

I NCT02494167

Multiple tumor-associated antigen (TAA)-specific cytotoxic T cells
(against NY-ESO-1, IMAGEA4, PRAME, SSX and survivin) from donors

Multiple Myeloma I NCT02291848

Survivin-vaccines

Survivin peptide vaccination in combination with sargramostin Malignant Glioma I NCT01250470

Vaccination with DPX-Survivin in combination with low doses of
cyclophosphamide (The peptide antigens targeting survivin)

Advanced Stage Ovarian,
Fallopian or Peritoneal Cancer

I/II) NCT01416038
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Table 1 Clinical trials targeting survivin in cancer (Continued)

hTERT/survivin/CMV multipeptide vaccine Breast Cancer Not
provided

NCT01660529

Multipeptide vaccination including survivin-peptide Multiple Myeloma I/II NCT00499577

SurVaxM Vaccine (survivin-peptide vaccine) in combination with temozolamide Glioblastoma II NCT02455557

Peptide vaccine (IDO/survivine peptide) as enhancer of temozolomide
chemotherapy

Metastatic Melanoma II NCT01543464

Vaccine therapy (MART1 analog, gp100 and survivin) and GM-CSF with or without
Aldesleukin

Melanoma I NCT00470015

Vaccine therapy (survivin) in patients receiving lenalidomide Multiple Myeloma I NCT02334865

hTERT tumor vaccine (peptides from telomerase, survivin and cytopeptide)
in combination with autologous T cell infusion

Multiple Myeloma I/II NCT00834665

Immunotherapeutic vaccine DPX-Survivac (targeting survivin) in combination
with cyclophosphamide

Diffuse Large B-Cell Lymphoma II NCT02323230

Survivin and telomerase peptide vaccination in combination with Daclizumab
and Prevnar

Advanced Breast cancer I NCT00573495

Survivin peptide vaccination Advanced Melanoma, pancreatic,
colon and cervical cancer

I/II NCT00108875
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Unfortunately, studies focusing on pharmacological in-
hibitors of survivin have shown rather disappointing re-
sults. In a phase I clinical trial in patients with acute
lymphoblastic leukemia, EZN3042, a locked antisense
construct against survivin, was toxic and patients
showed poor tolerance to treatment [190]. Subsequently,
the application of EZN3042 was suspended for the indi-
cated reasons [190]. In a study in patients with advanced
NSCLC solid tumors, YM155, an inhibitor of Sp1-
mediated survivin expression, displayed an acceptable
safety profile; however, this compound failed to improve
responses to chemotherapy treatment [191]. In patients
with leukemia, Terameprocol, an inhibitor of survivin
and cyclin-dependent kinase-1 was found to be safe in
phase I study. In addition, a therapeutic effect (partial
response and disease stabilization by terameprocol) was
observed in patients treated with this compound [192].
Currently, an additional trial is underway evaluating
terameprocol in patients with refractory solid tumors
(Clinical trial identifier NCT00664586). Additional stud-
ies are required to corroborate the utility of these ap-
proaches in cancer treatment.
Multiple survivin-based studies involving cell therapy

are currently underway. In this context, the use of den-
dritic cells loaded with survivin-peptide (Clinical trial
identifier NCT01456065) or survivin mRNA (Clinical
trial identifier NCT01334047, NCT00978913) in associ-
ation with telomerase and p53 mRNAs are being evalu-
ated in clinical trials in patients with ovarian cancer,
metastatic breast cancer and malignant melanoma. Fur-
thermore, the efficacy of cytotoxic T lymphocytes ex-
posed to a mixture of TAAs, including survivin, is
currently being tested in the treatment of hematological
malignancies (clinical trial identifier NCT01333046,
NCT02203903, NCT02475707). Thus, cellular therapy
represents an intense area of contemporary research, al-
though clear benefits of such treatments remain to be
established.
In addition to the approaches mentioned, considerable

effort is being placed on the development of survivin-
based vaccines (survivin mRNA and peptide) for the
treatment of several different types of cancer, including
breast cancer, kidney cancer, advanced melanomas and
ovarian cancer (Table 1). Promising results were ob-
tained in renal carcinoma patients where survivin-
vaccination lead to disease stabilization [193] and a re-
sponse in 35 % of the patients without adverse toxicity
effects [194]. The most successful results have been ob-
tained in ovarian cancer, where DPX-Survivac, a vaccine
based on the use of survivin peptides in conjunction
with a DepoVax™ adjuvant, administrated in a treatment
together with cyclophosphamide, yielded favorable re-
sults in a phase I clinical trial. This treatment was found
to be safe, well-tolerated by patients and yielded strong
immune responses against tumors [195]. Recently, DPX-
Survivac was designated by the FDA as an orphan drug
for maintenance therapy in ovarian cancer patients with
no measurable disease after standard treatments (sur-
gery/chemotherapy). These promising results obtained
with DPX-Survivac open up a wide array of possibilities
and further studies are required to determine the effi-
cacy of this vaccine in phase II trials.
In a phase II trial in patients with metastatic melan-

oma, a treatment involving vaccination with autologous
dendritic cells previously pulsed with survivin, hTERT
and p53-derived peptides together with cyclophospha-
mide and celecoxib (COX-2 inhibitor) was evaluated
(clinical trial identifier NCT00197912) [196]. This
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treatment was shown to be safe and tolerable and an in-
crease in the immune response was detected. Also, for
almost 60 % of patients the disease was stabilized for
four or more months (clinical trial identifier
NCT00197912) [196]. In summary, many clinical trials
are currently underway to determine whether targeting
survivin represents an effective approach to limit tumor
development. Although some trials have unfortunately
met with limited success, others, such as those targeting
ovarian cancer, have yielded highly promising results.
Here, it should be noted that ovarian cancer is precisely
a case where angiogenesis represents a highly prevalent
“hallmark” trait, underscoring thereby the importance of
survivin in this context, as has been discussed through-
out this review.

Conclusions
Survivin plays an important role in processes that favor
tumor growth and angiogenesis. HIF1α stabilization under
low oxygen conditions and/or via ROS production pro-
motes survivin and VEGF expression and favors angiogen-
esis. In addition to the well-established role of survivin in
endothelial cells, survivin in tumor cells enhances β-
Catenin Tcf/Lef-dependent VEGF transcription, synthesis
and release, thereby promoting angiogenesis of endothelial
cells. More recently, cancer cells have also been shown to
form vascular-like structures in the absence of endothelial
cells in a process known as vasculogenic mimicry. In a
poorly vascularized tumor microenvironment, we posit
that hypoxia-enhanced survivin levels may increase VEGF
production and EMT, thus promoting the process of vas-
culogenic mimicry. While highly intriguing, this possibility
remains to date largely speculative; however, this should
represent a fruitful area for research in the future, both in
the perspective of developing a better understanding of
the underlying mechanisms, as well as how such insight
might be harnessed to treat tumors more effectively.
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