54 research outputs found

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Partitions of graphs into small and large sets

    Full text link
    Let GG be a graph on nn vertices. We call a subset AA of the vertex set V(G)V(G) \emph{kk-small} if, for every vertex vAv \in A, deg(v)nA+k\deg(v) \le n - |A| + k. A subset BV(G)B \subseteq V(G) is called \emph{kk-large} if, for every vertex uBu \in B, deg(u)Bk1\deg(u) \ge |B| - k - 1. Moreover, we denote by φk(G)\varphi_k(G) the minimum integer tt such that there is a partition of V(G)V(G) into tt kk-small sets, and by Ωk(G)\Omega_k(G) the minimum integer tt such that there is a partition of V(G)V(G) into tt kk-large sets. In this paper, we will show tight connections between kk-small sets, respectively kk-large sets, and the kk-independence number, the clique number and the chromatic number of a graph. We shall develop greedy algorithms to compute in linear time both φk(G)\varphi_k(G) and Ωk(G)\Omega_k(G) and prove various sharp inequalities concerning these parameters, which we will use to obtain refinements of the Caro-Wei Theorem, the Tur\'an Theorem and the Hansen-Zheng Theorem among other things.Comment: 21 page

    New approach to the k-independence number of a graph

    Get PDF
    Let G = (V,E) be a graph and k > 0 an integer. A k-independent set S V is a set of vertices such that the maximum degree in the graph induced by S is at most k. With k(G) we denote the maximum cardinality of a k-independent set of G. We prove that, for a graph G on n vertices and average degree d, k(G) > k+1 dde+k+1n, improving the hitherto best general lower bound due to Caro and Tuza [Improved lower bounds on k-independence, J. Graph Theory 15 (1991), 99–107].Peer ReviewedPostprint (published version
    corecore