research

Partitions of graphs into small and large sets

Abstract

Let GG be a graph on nn vertices. We call a subset AA of the vertex set V(G)V(G) \emph{kk-small} if, for every vertex vAv \in A, deg(v)nA+k\deg(v) \le n - |A| + k. A subset BV(G)B \subseteq V(G) is called \emph{kk-large} if, for every vertex uBu \in B, deg(u)Bk1\deg(u) \ge |B| - k - 1. Moreover, we denote by φk(G)\varphi_k(G) the minimum integer tt such that there is a partition of V(G)V(G) into tt kk-small sets, and by Ωk(G)\Omega_k(G) the minimum integer tt such that there is a partition of V(G)V(G) into tt kk-large sets. In this paper, we will show tight connections between kk-small sets, respectively kk-large sets, and the kk-independence number, the clique number and the chromatic number of a graph. We shall develop greedy algorithms to compute in linear time both φk(G)\varphi_k(G) and Ωk(G)\Omega_k(G) and prove various sharp inequalities concerning these parameters, which we will use to obtain refinements of the Caro-Wei Theorem, the Tur\'an Theorem and the Hansen-Zheng Theorem among other things.Comment: 21 page

    Similar works