2,879 research outputs found

    Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth.

    No full text
    Some insects use leading-edge vortices to generate high lift forces, as has been inferred from qualitative smoke visualisations of the flow around their wings. Here we present the first Digital Particle Image Velocimetry (DPIV) data and quantitative analysis of an insect’s leading-edge vortex and near wake at two flight speeds. This allows us to describe objectively 2D slices through the flow field of a tethered Tobacco Hawkmoth (Manduca sexta). The near-field vortex wake appears to braodly resemble elliptical vortex loops. The presence of a leading-edge vortex towards the end of the downstroke is found to coincide with peak upward force production measured by a six-component force–moment balance. The topology of Manduca’s leading-edge vortex differs from that previously described because late in the downstroke, the structure extends continuously from wingtip across the thorax to the other wingtip

    Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in 14C production

    Get PDF
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1002/grl.50222/abstractWe examine possible sources of a substantial increase in tree ring 14C measurements for the years AD 774-775. Contrary to claims regarding a coronal mass ejection (CME), the required CME energy is not several orders of magnitude greater than known solar events. We consider solar proton events (SPEs) with three different fluences and two different spectra. The data may be explained by an event with fluence about one order of magnitude beyond the October 1989 SPE. Two hard spectrum cases considered here result in moderate ozone depletion, so no mass extinction is implied, though we do predict increases in erythema and damage to plants from enhanced solar UV. We are able to rule out an event with a very soft spectrum that causes severe ozone depletion and subsequent biological impacts. Nitrate enhancements are consistent with their apparent absence in ice core data. The modern technological implications of such an event may be extreme, and considering recent confirmation of superflares on solar-type stars, this issue merits attention

    The Secret Life of Oilbirds: New Insights into the Movement Ecology of a Unique Avian Frugivore

    Get PDF
    Background: Steatornis caripensis (the oilbird) is a very unusual bird. It supposedly never sees daylight, roosting in huge aggregations in caves during the day and bringing back fruit to the cave at night. As a consequence a large number of the seeds from the fruit they feed upon germinate in the cave and spoil. Methodology/Principal Findings: Here we use newly developed GPS/acceleration loggers with remote UHF readout to show that several assumptions about the behaviour of Steatornis caripensis need to be revised. On average, they spend only every 3 rd day in a cave, individuals spent most days sitting quietly in trees in the rainforest where they regurgitate seeds. Conclusions/Significance: This provides new data on the extent of seed dispersal and the movement ecology of Steatornis caripensis. It suggests that Steatornis caripensis is perhaps the most important long-distance seed disperser in Neotropical forests. We also show that colony-living comes with high activity costs to individuals

    X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres

    Full text link
    The spectacular outbursts of energy associated with supernovae (SNe) have long motivated research into their potentially hazardous effects on Earth and analogous environments. Much of this research has focused primarily on the atmospheric damage associated with the prompt arrival of ionizing photons within days or months of the initial outburst, and the high-energy cosmic rays that arrive thousands of years after the explosion. In this study, we turn the focus to persistent X-ray emission, arising in certain SNe that have interactions with a dense circumstellar medium, and observed months and/or years after the initial outburst. The sustained high X-ray luminosity leads to large doses of ionizing radiation out to formidable distances. We provide an assessment of the threat posed by these X-ray luminous SNe by analyzing the collective X-ray observations from Chandra, Swift-XRT, XMM-Newton, NuSTAR, and others. We find that this threat is particularly acute for SNe showing evidence of strong circumstellar interaction, such as Type IIn explosions, which have significantly larger ranges of influence than previously expected, and lethal consequences up to \sim 50 pc away. Furthermore, X-ray bright SNe could pose a substantial and distinct threat to terrestrial biospheres, and tighten the Galactic habitable zone. We urge follow-up X-ray observations of interacting SNe for months and years after the explosion to shed light on the physical nature of the emission and its full time evolution, and to clarify the danger that these events pose for life in our Galaxy and other star-forming regions.Comment: 24 pages, 6 figures. Now includes a more detailed analysis of X-ray effectiveness for ozone destruction; conclusions unchanged. Matches version to appear in Ap

    Differential responses of ecotypes to climate in a ubiquitous arctic sedge: implications for future ecosystem C cycling

    Get PDF
    The response of vegetation to climate change has implications for the carbon cycle and global climate. It is frequently assumed that a species responds uniformly across its range to climate change. However, ecotypes—locally adapted populations within a species—display differences in traits, which may affect their gross primary productivity (GPP) and response to climate change. To determine if ecotypes are important for understanding the response of ecosystem productivity to climate we measured and modeled growing season GPP in reciprocally transplanted and experimentally warmed ecotypes of the abundant arctic sedge Eriophorum vaginatum. Transplanted northern ecotypes displayed home site advantage in GPP that was associated with differences in leaf area index. Southern ecotypes exhibited a greater response in GPP when transplanted. The results demonstrate that ecotypic differentiation can impact the morphology and function of vegetation with implications for carbon cycling. Moreover they suggest that ecotypic control of GPP may limit the response of ecosystem productivity to climate change. This investigation shows that ecotypes play a substantial role in determining GPP and its response to climate. These results have implications for understanding annual to decadal carbon cycling where ecotypes could influence ecosystem function and vegetation feedbacks to climate change

    Disentangling the Cosmic Web I: Morphology of Isodensity Contours

    Get PDF
    We apply Minkowski functionals and various derived measures to decipher the morphological properties of large-scale structure seen in simulations of gravitational evolution. Minkowski functionals of isodensity contours serve as tools to test global properties of the density field. Furthermore, we identify coherent objects at various threshold levels and calculate their partial Minkowski functionals. We propose a set of two derived dimensionless quantities, planarity and filamentarity, which reduce the morphological information in a simple and intuitive way. Several simulations of the gravitational evolution of initial power-law spectra provide a framework for systematic tests of our method.Comment: 26 pages including 12 figures. Accepted for publication in Ap

    Dynamic shapes of the zygote and two-cell mouse and human

    Get PDF
    Mouse zygote morphokinetics were measured during interphase, the mitotic period, cytokinesis, and two-cell stage. Sequences of rounder–distorted–rounder shapes were revealed, as were changing patterns of cross section area. A calcium chelator and an actin-disrupting agent inhibited the area changes that occurred between pronuclear envelope breakdown and cytokinesis. During cell division, two vortices developed in each nascent cell and they rotated in opposite directions at each end of the cell, a pattern that sometimes persisted for up to 10 h. Exchange with the environment may have been promoted by these shape and area cycles and persisting circulation in the cytoplasm may have a similar function between a cell's interior and periphery. Some of these movements were sporadically also seen in human zygotes with abnormal numbers of pronuclei and the two-cell stages that developed from these compromised human zygotes

    The Diboson Excess: Experimental Situation and Classification of Explanations; A Les Houches Pre-Proceeding

    Get PDF
    We examine the `diboson' excess at 2\sim 2 TeV seen by the LHC experiments in various channels. We provide a comparison of the excess significances as a function of the mass of the tentative resonance and give the signal cross sections needed to explain the excesses. We also present a survey of available theoretical explanations of the resonance, classified in three main approaches. Beyond that, we discuss methods to verify the anomaly, determining the major properties of the various surpluses and exploring how different models can be discriminated. Finally, we give a tabular summary of the numerous explanations, presenting their main phenomenological features.Comment: 37 pages, 9 Figures, 1 Tabl

    Regulatory T-Cells and Associated Pathways in Metastatic Renal Cell Carcinoma (mRCC) Patients Undergoing DC-Vaccination and Cytokine-Therapy

    Get PDF
    Purpose: To evaluate CD4+CD25+FOXP3+ T regulatory cells (TREG) and associated immune-regulatory pathways in peripheral blood lymphocytes (PBL) of metastatic renal cell carcinoma (mRCC) patients and healthy volunteers. We subsequently investigated the effects of immunotherapy on circulating TREG combining an extensive phenotype examination, DNA methylation analysis and global transcriptome analysis. Design: Eighteen patients with mRCC and twelve volunteers (controls) were available for analysis. TREG phenotype was examined using flow cytometry (FCM). TREG were also quantified by analyzing the epigenetic status of the FOXP3 locus using methylation specific PCR. As a third approach, RNA of the PBL was hybridized to Affymetrix GeneChip Human Gene 1.0 ST Arrays and the gene signatures were explored using pathway analysis. Results We observed higher numbers of TREG in pre-treatment PBL of mRCC patients compared to controls. A significant increase in TREG was detected in all mRCC patients after the two cycles of immunotherapy. The expansion of TREG was significantly higher in non-responders than in responding patients. Methylation specific PCR confirmed the FCM data and circumvented the variability and subjectivity of the FCM method. Gene Set Enrichment Analysis (GSEA) of the microarray data showed significant enrichment of FOXP3 target genes, CTLA-4 and TGF-ß associated pathways in the patient cohort. Conclusion: Immune monitoring of the peripheral blood and tumor tissue is important for a wide range of diseases and treatment strategies. Adoption of methodology for quantifying TREG with the least variability and subjectivity will enhance the ability to compare and interpret findings across studies
    corecore