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ABSTRACT

We apply Minkowski functionals and various derived measures to decipher

the morphological properties of large–scale structure seen in simulations of grav-

itational evolution. Minkowski functionals of isodensity contours serve as tools

to test global properties of the density field. Furthermore, we identify coherent

objects at various threshold levels and calculate their partial Minkowski func-

tionals. We propose a set of two derived dimensionless quantities, planarity and

filamentarity, which reduce the morphological information in a simple and intu-

itive way. Several simulations of the gravitational evolution of initial power–law

spectra provide a framework for systematic tests of our method.
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1. Introduction

The existence of the large–scale clustering of galaxies had already been well established

by the early 1970’s mainly due to the pioneering work of Totsuji & Kihara (1969) and

Peebles (1974) who showed that the two–point correlation function for galaxies in the Lick

and Zwicky catalogues was positive and had the power-law form ξ(r) ∝ r−1.8 on scales

∼< 10h−1Mpc. Their result was later extended to three–dimensional galaxy catalogues as

well. Although the clustering of galaxies is now a well–known fact, a complete description

of clustering which includes its geometrical features has so far eluded researchers. This is

perhaps due to the fact that the galaxy density field which we observe appears to be strongly

non–Gaussian. A Gaussian random field is uniquely described by its power spectrum P (k),

or its two–point correlation function ξ(r) since ξ(r) and P (k) form a Fourier transform pair.

This is no longer true for a non–Gaussian field for which ξ must be complemented by other

statistical descriptors which are sensitive to the structure of matter on large scales. In the

so-called “standard model” of structure formation, an initially Gaussian density distribution

becomes non–Gaussian due to mode-coupling and the resultant build up of phase correlations

during the non–linear regime. These phase correlations give rise to the amazing diversity of

form, which is characteristic of a highly evolved distribution of matter, and is often referred

to as being cellular, filamentary, sheet–like, network–like, sponge–like, a cosmic web etc.

Most of these descriptions are based either on a visual appearance of large–scale structure

or on the presence of features that are absent in the reference Gaussian distribution which,

by definition, is assumed to be featureless. Gravitational instability, for example, may cause

CDM–like Gaussian initial perturbations to evolve towards a density field that percolates

at a higher density threshold, i.e. at a lower filling factor, than a Gaussian field (Melott et

al. 1983). Such distributions display greater connectivity and are sometimes referred to as

being “network–like” (Yess & Shandarin 1996).

In order to come to grips with the rich textural possibilities inherent in large–scale

structure, a number of geometrical indicators of clustering have been proposed in the past

including minimal spanning trees (Barrow et al. 1985), the genus curve (Gott III et al.

1986), percolation theory (Zel’dovich & Shandarin 1982; Shandarin 1983) and shape analy-

sis (Sathyaprakash et al. 1998; Sahni & Coles 1995 and references therein). A major recent

advance in our understanding of gravitational clustering has been associated with the ap-

plication of Minkowski functionals (MFs) to cosmology (Mecke et al. 1994). The four MFs

V0, . . . , V3 provide an excellent description of the geometrical properties of a collection of

point objects (galaxies) or, alternatively, of continuous distributions such as density fields in

large–scale structure or brightness contours in the cosmic microwave background. The scope

and descriptive power of the MFs is enhanced by the fact that both percolation analysis

and the genus curve are members of the family. Additionally, as demonstrated by Sahni et
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al. (1998), ratios of MFs provide us with an excellent “shape statistic” with which one may

attempt to quantify the morphology of large scale structure, including the shapes of individ-

ual superclusters and voids. Spurred by the success of MFs in quantifying the geometrical

properties of large–scale structure we apply the MFs to scale–invariant N–body simulations

of gravitational clustering, with an attempt to probe both the global properties and the

individual “bits and pieces” that might make up the “cosmic web” (Bond et al. 1996).

2. Method

2.1. Minkowski functionals

Minkowski functionals (named after Minkowski 1903) were introduced into cosmology by

Mecke et al. (1994) employing the generalized Boolean grain model. This model associates

a body with a point process (in our case given by the location of galaxies or clusters) by

decorating each point with a ball of radius r. The union set of the covering balls is then

studied morphologically, whereby the radius of the ball serves as a diagnostic parameter

probing the spatial scale of the body.

In this paper we shall use the excursion set approach which is applicable to continuous

fields (that may be constructed from point processes). Schmalzing & Buchert (1997) pointed

out how to apply Minkowski functionals to isocontours of continuous fields, where the con-

tour level (the threshold) is employed as diagnostic parameter. The excursion set approach

inherits two diagnostic parameters, because we may also vary the smoothing scale used in

constructing the continuous field.

In three dimensions there exist four Minkowski functionals Vµ, µ = 0, 1, 2, 3. They

provide a complete and unique description of a pattern’s global morphology in the sense

of Hadwiger’s theorem (Hadwiger 1957). While reducing the information contained in the

full hierarchy of correlation functions, this small set of numbers incorporates correlations of

arbitrary order and therefore provides a complementary look on large–scale structure. The

geometric interpretations of all Minkowski functionals in three dimensions are summarized

in Table 1.

We calculate global Minkowski functionals of the isodensity contours of the density field

as described in Appendix A. Furthermore, we separately calculate the partial Minkowski

functionals of each isolated part of the isodensity contour. Since the total isodensity contour

is the union of all its parts, the global functionals are given as sums of the partial functionals

at the same threshold. This follows the spirit of Mecke et al. (1994), where partial Minkowski

functionals are introduced to measure local morphology for the generalized Boolean grain
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model.

Partial Minkowski functionals (PMF) offer the possibility of probing the morphology of

individual objects, or the object’s environmental morphological properties, respectively. We

expect that this concept will be more powerful when applied to continuous fields at high

spatial resolution so that the details of structures are not smoothed out. Their application

to point processes also delivers more direct information. PMF provide a wide range of

possibilities for morphological studies which we shall explore in a forthcoming paper.

2.2. Shapefinders

One important task of morphological statistics consists in quantifying strongly non–

Gaussian features such as filaments and pancakes. Given the four Minkowski functionals, we

aim at reducing their morphological information content to two measures of planarity and

filamentarity, respectively, as has been done for example with various geometrical quantities

(Mo & Buchert 1990), moments of inertia (Babul & Starkman 1992), and cumulants of

counts–in–cells (Luo & Vishniac 1995).

Recently, Sahni et al. (1998) proposed a set of shapefinders derived from Minkowski

functionals. One starts from the three independent ratios of Minkowski functionals that have

dimension of length. Requiring that they yield the radius R if applied to a ball, we define

Thickness T :=
V0

2V1
, Width W :=

2V1

πV2
, Length L :=

3V2

4V3
. (1)

By the isoperimetric inequalities (B5), we have L≥W≥T for any convex body.

Going one step further, Sahni et al. (1998) also define dimensionless shapefinders by

Planarity P :=
W − T

W + T
, Filamentarity F :=

L−W

L + W
. (2)

Some examples are in order.

2.3. Simple examples

Let us consider some simple families of convex bodies in three–dimensional space that

can take both filamentary and planar shape.
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A spheroid with two axes of length r and one axis of length λr has Minkowski functionals

V0 =
4π

3
r3λ, V1 =

π

3
r2 (1 + f(1/λ)) , V2 =

2

3
r (λ + f(λ)) , V3 = 1, (3)

where6

f(x) =
arccos x√

1− x2
. (4)

By varying the parameter λ from zero to infinity, we can change the morphology of the

spheroid from a filament to a pancake via a spherical cluster.

A different way of deforming a filament into a pancake goes via generic triaxial ellipsoids;

thereby one of the smaller axes of a strongly prolate spheroid is increased in size until it

matches the larger axis and an oblate spheroid has been reached. An integral expression can

be found in (Sahni et al. 1998).

Yet another transition from prolate to oblate shape is provided by cylinders of radius r

and height λr. Here, the Minkowski functionals are given by

V0 = πr3λ, V1 =
π

3
r2(1 + λ), V2 =

1

3
r(π + λ), V3 = 1. (5)

A Blaschke diagram, that is a plot of planarity P and filamentarity F , summarizing the

morphological properties of these simple convex bodies is shown in Figure 1.

3. A set of N–body simulations

3.1. Description

We start from a family of initial power law spectra P (k) ∝ kn with n ∈ {−2,−1, 0, +1}
set before an Einstein–de Sitter background (Ω=1, Λ=0). We conduct numerical experiments

using a PM code (consult Melott & Shandarin 1993 for details). Four sets of phases were

used for each model, making a total of 16 simulation runs. Each run consists of 1283 particles

sampled at an epoch well in the non–linear regime. This epoch is chosen such that the scale

of non–linearity knl, defined in terms of the evolved spectrum

σ2
knl

=

∫ knl

0

d3kP (k) = 1, (6)

6Note that for arguments x > 1, one can use the relation i arccosx = ln
(
x +

√
x2 − 1

)
to recover an

explicitly real–valued expression.
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is equal to eight in units of the fundamental mode of the simulation box. By using the stage

knl = 8, we make sure that structure is already sufficiently developed on scales much larger

than the simulation’s resolution, while it is not yet influenced by boundary effects.

Using a cloud–in–cell kernel, these particles were put onto a 2563 grid, which is the max-

imum value an ordinary workstation can tackle with acceptable time and memory consump-

tion. Subsequently, the density field was smoothed with a Gaussian kernel ∝ exp (−x2/2λ2),

where x is the distance in mesh units and the width λ is set to 3. Tests have shown that this

value both leads to a reasonably smooth field, and preserves at least some detail on smaller

scales. Throughout the article, we re–scale the density to the density contrast δ, ranging

from −1 to infinity with zero mean.

3.2. The global field

The global Minkowski functionals calculated from the density fields described in the

previous section are shown in Figure 2. The four different line styles correspond to the

different spectral indices. Figure 3 shows the Minkowski functionals for the same set of

models, but instead of the density threshold δ, the rescaled threshold ν is used as the x–

axis. ν is calculated from the volume Minkowski functional v0, that is the filling factor f ,

as described by Gott III et al. (1987). Essentially, its use forces exact Gaussian behavior of

the volume v0, by the implicit connection

v0(δ) =
1

2
− 1

2
Φ

(
ν√
2

)
. (7)

Thus the deviations from Gaussianity that are due to changes in the one–point probabil-

ity distribution function are removed, and deviations due to higher–order correlations are

emphasized.

Obviously, the global functionals clearly discriminate between the various models. How-

ever, in order to make this statement more quantitative, let us take a closer look at the

individual coherent objects composing the isodensity contours.

3.3. The largest objects

At intermediate thresholds, the excursion sets consist of numerous isolated objects. We

identify them by grouping adjacent occupied grid cells into one object, where adjacent means

that the cells have a common face. Since the Minkowski functionals of the global field are
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calculated by integrating over quantities that can be assigned to individual grid cells, the

partial Minkowski functionals of each object can be obtained at no extra cost once the cells

belonging to each object have been identified.

Several plots in Figures 4, 5, 6, and 7 illustrate the behavior of the Minkowski functionals

of these objects.

Obviously, the contribution of smaller objects to the volume is almost negligible com-

pared to the largest one. Note that in all figures, the mean and standard deviation over

all four realizations are shown instead of the individual curves. It is worth noting that the

variance is largest in the n = −2 and −1 models, which are dominated by structures on large

scales and hence show the strongest sample variance.

The models with various initial spectral indices n show qualitatively a similar behav-

ior. At small filling factors (high density thresholds) the two largest clusters give negligible

contribution to each of the global characteristics. Then, at percolation transition the largest

cluster quickly becomes the dominant structure in terms of volume, area, and integrated

mean curvature. The second largest cluster also grows at the percolation threshold but just

a little and then quickly diminishes. The percolation transition is clearly marked in all three

characteristics of the largest cluster by their sudden growth. However, this transition does

not happen at a well–defined threshold. Instead, clusters gradually merge into the largest

objects as the threshold is decreased (the filling factor grows). This continuous transition

has also been observed using percolation analysis, i.e. the zeroth Minkowski functional alone

(Shandarin & Zel’dovich 1983; Shandarin & Yess 1998; Klypin & Shandarin 1993; Sahni et

al. 1997) and is explained by the finite size of the sample.

Nevertheless, the percolation transitions happen within fairly narrow ranges of the fill-

ing factor that are clearly distinct for different models in question: The filling factors are

approximately 0.03 ± 0.01, 0.07 ± 0.015, 0.11 ± 0.015, 0.14± 0.015 in the n = −2,−1, 0, +1

models, respectively. It is remarkable that all percolation transitions occur at smaller filling

factors than in Gaussian fields (about 0.16) indicating that even in the most hierarchical

model (n = +1) the structures tend to be more connected than in the “structureless” Gaus-

sian field. Pauls & Melott (1995) showed positive correlation with networks based on the

same phases all the way to n = +3. This confirms the conclusion of Yess & Shandarin

(1996): The universality of the network structures results from the evolution of Gaussian

initial conditions through gravitational instability. The Euler characteristic of the largest

cluster also marks the percolation threshold but in a different manner: before percolation

it is zero and after percolation it becomes negative in every model, however, in the n = 0

and n = +1 models it grows to a small positive peak before becoming negative. All global

functionals have no particular features at the percolation threshold.
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3.4. Small objects

As an example, the Blaschke diagram for the model n = −2 is shown in Figure 8. The

distributions for the other models look qualitatively very similar and the average quantities

for other models are presented in Figures 9 and 10. Figure 9 shows that most of the small

objects are either spherical or slightly planar (two largest dots in Figure 8). There is also

a considerable number of elongated clusters with filamentarities from 0.1 to 0.5. In some

cases filamentarity reaches large values ∼ 1. On the contrary planarity is much weaker, it

hardly reaches the value of 0.2 (which is partly a consequence of the smoothing). There is a

hint of a small correlation between filamentarity and planarity: the objects with the largest

filamentarity also tend to have larger planarity.

Figures 9 and 10 display the shapefinders as functions of the cluster mass. The curves

give averages over the realizations of each model. Apparently, the signal for filamentarity

is much stronger than for planarity, regardless of the model which is in full agreement with

Figure 8. The planarity and filamentarity distributions qualitatively look very similar except

the amplitude. Small objects (5 × 10−6 ∼< m ∼< 5 × 10−4) display stronger planarity and

filamentarity for models with more power on large scales. However, for greater masses (m ∼>
5×10−4) the situation is reversed: the less large-scale power the greater the filamentarity and

planarity. If the former seems to be natural and was expected, the latter has been unexpected.

Both the planarity and filamentarity monotonically grow and reach their maxima at largest

clusters: Pm ≈ 0.1 and Pm ≈ 0.5 in all models. As expected the largest objects possess the

largest planarities and filamentarities, but the independence of the maxima from the model

again was unexpected. Figures 11 and 12 show the histograms for the shapefinders P and

F , respectively. They clearly show the large difference in the total number of structures:

the more power on small scales the greater the abundance of clusters. These figures are in

general agreement with the Figures 9 and 10.

4. Conclusion and Outlook

Global Minkowski functionals do discriminate (Figures 2 and 3). Only the n = −2

model shows slight drawbacks as far as robustness is concerned, but that is due to the

method’s sensitivity to large–scale features of the smoothed density field. The total area,

mean curvature, and Euler characteristic are sensitive to abundances of the structures and are

easy to interpret: the more power on small scales (greater n) the more abundant structures

and therefore the greater the amplitude of the curve.

Even more valuable information is obtained from looking at the Minkowski functionals



– 9 –

of the largest coherent object at each threshold (Figures 4, 5, 6, and 7). All four Minkowski

functionals of the largest cluster clearly consistently detect the percolation transition. Two

points are worth stressing: 1) in all models the percolation transition happens at smaller

filling factors than in the “structureless” Gaussian fields and 2) the more power on the large

scales (i.e. the smaller n) the smaller the filling factor at percolation. Both conclusions con-

firm the results of Yess & Shandarin (1996) about the universality of the network structures

in the power law models with n ≤ 1. The results of Pauls & Melott (1995) present evidence

that this should be expected all the way up to n = +3; at n = +4 mode coupling effects

from smaller scales should begin to fully disrupt the network structure.

Small objects, on the other hand, give different results. Their abundance discriminates

well, but is already determined by the difference in the Euler characteristic as well as by

the total area and mean curvature of the whole contour (Figures 2 and 3) that are also

sensitive to the abundance of structures. The morphology of small objects as measured by

shapefinders shows little differences between models so far (Figures 9, 10, 11 and 12). Both

the maximum average planarity (P ≈ 0.1) and the maximum average filamentarity (F ≈ 0.5)

are reached in the most massive non-percolating objects. None of the model showed ribbon–

like objects characterized by both large planarity and large filamentarity. We may speculate

that the smaller objects are ones which formed earlier, are more nonlinear, and therefore

more decoupled from initial conditions.

However, all models used Gaussian initial conditions, and evolve under the influence of

gravity. Hence the similar morphology of the clumps may point towards universal behavior.

Note that things such as string wakes might produce totally different results.

The grouping and measurement techniques used in this study may be less accurate

for small objects than for large clusters. It is worth trying to study the morphology of

small objects by applying more accurate methods of measuring partial Minkowski functionals

such as a Boolean grain model (Schmalzing 1996, and a follow–up to this article) or the

interpolation method of Novikov et al. (1998) generalized to three dimensions.
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A. Calculating Minkowski functionals of isodensity contours

Using methods from integral geometry and scale–space theory, Schmalzing & Buchert

(1997) developed numerical methods to quantify the morphology of isodensity contours of

a random field. They present two complementary possibilities for estimating Minkowski

functionals.

Given a density field sampled at the grid points of a cubic lattice with lattice constant

a, Crofton’s formula (Crofton 1868) requires counting of the number of grid cells per unit

volume contained in the excursion set. We obtain

V̂0(ν) = n3, (A1)

V̂1(ν) = 2
9a

(n2 − 3n3), (A2)

V̂2(ν) = 2
9a2 (n1 − 2n2 + 3n3), (A3)

V̂3(ν) = 1
a3 (n0 − n1 + n2 − n3), (A4)

where the quantity nj is the number density of j–dimensional elementary cells; to be specific,

n3 is the number of grid volumes, n2 counts the grid faces, and n1 and n0 denote the numbers

of grid edges and lattice points, respectively.

Alternatively, it is sufficient to estimate the derivatives of the random field at the grid

points and perform a spatial average 〈·〉D = 1
D

∫
D

d3x· over Koenderink invariants7

V̂0(ν) = 〈Θ(u− ν)〉D , (A5)

V̂1(ν) =
〈

1
6
δ(u− ν)(u,iu,i)

1/2
〉
D , (A6)

V̂2(ν) =
〈

1
3π

δ(u− ν)
εijmεklmu,iu,jku,l

2u,nu,n

〉
D

, (A7)

V̂3(ν) =
〈

1
4π

δ(u− ν)
εijkεlmnu,iu,lu,jmu,kn

2(u,pu,p)3/2

〉
D

. (A8)

Careful analysis reveals that both families of estimators are biased by the finite lattice

constant a encountered with any practical realization of a random field. The deviations are

of order a2 and can be evaluated analytically for a Gaussian random field (see Winitzki &

Kosowsky 1997 for some results). It turns out that the two estimates using Crofton’s formula

and Koenderink invariants, respectively, deviate from the true value in opposite directions.

7The notation is chosen to emphasize the coordinate invariance of the integrand. We use indices following a
comma to indicate differentiation with respect to the corresponding coordinate. εijk denotes the components
of the totally antisymmetric third–rank tensor normalized to ε123 = 1. Summation over pairwise indices is
understood.
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Hence their difference gives at least a rough idea of the errors associated with binning the

continuous field onto a finite lattice.

Yet another method of calculating Minkowski functionals of isocontours was suggested

by Novikov et al. (1998). However, their interpolation method has so far only been imple-

mented in two dimensions.

B. Isoperimetric inequalities and shapefinders

In his original article, Minkowski (1903) introduced the mixed volumes V (K1, . . . , Kn)

of n convex bodies K1 to Kn. In terms of ordinary volumes of Minkowski sums of the bodies,

we have

V (K1, . . . , Kn) :=
1

n!

n∑
k=1

(−1)n+k
∑

i1<...<ik

V (Ki1 ⊕ . . .⊕Kik), (B1)

where the Minkowski sum is defined as

K ⊕ L := {x + y|x ∈ K, y ∈ L} . (B2)

In the case of a single body, the mixed volume reduces to its ordinary volume. Furthermore,

these quantities inherit many interesting properties from the volume and hence play a central

role in the Brunn–Minkowski theory (see Schneider 1993 for an introduction).

A most useful inequality proved by Alexandrov (1937) and Fenchel (1936) states that

V 2(K1, K2, . . . , Kn) ≥ V (K1, K1, K3 . . . , Kn) V (K2, K2, K3 . . . , Kn). (B3)

The Minkowski functionals of a body K in d dimensions can be related to mixed volumes of

two bodies via8

Vj(K) =
1

ωj
V (K, . . . , K︸ ︷︷ ︸

d−j

, B, . . . , B︸ ︷︷ ︸
j

), (B4)

8The volume of the j–dimensional unit ball is denoted by ωj . Some special values are ω0 = 1, ω1 = 2,
ω2 = π, and ω3 = 4π

3 . The general formula reads

ωj =
πj/2

Γ (j/2 + 1)
.
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where B denotes the d–dimensional unit ball. Consult the book by Burago & Zalgaller

(1988) for a broad discussion of the Alexandrov–Fenchel inequality and related issues.

In three dimensions, the Alexandrov–Fenchel inequality (B3) leads to two independent

non–trivial inequalities for the Minkowski functionals, namely

V1
2 ≥ π

4
V0V2, (B5)

V2
2 ≥ 8

3π
V1V3. (B6)

(B7)

These two inequalities motivate the introduction of the Blaschke diagram (Hadwiger

1955). A convex body with Minkowski functionals Vj is mapped to a point (x, y) with

coordinates

x :=
πV0V2

4V 2
1

, y :=
8V1V3

3πV 2
2

. (B8)

A ball has x = y = 1. For convex bodies, all Minkowski functionals are non–negative, and

satisfy the inequalities (B5), so these points are confined to the unit square. Nevertheless,

the convex bodies do not fill the whole unit square – the limiting isoperimetric inequality

has yet to be found (Schneider 1993 and references therein).

The dimensionless shapefinders introduced in equation (2) are related to the isoperi-

metric ratios via

P =
1− x

1 + x
, F =

1− y

1 + y
. (B9)

Obviously, a scatter plot of shapefinders is almost equivalent to the ordinary Blaschke di-

agram reflected at the point (0.5, 0.5), so either method of presentation should convey the

same morphological information. Throughout this article, we refer to plots of shapefinders

(P,F) as Blaschke diagrams.
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geometric quantity µ Vµ

V volume 0 V0 = V

A surface 1 V1 = A/6

H mean curvature 2 V2 = H/3π

χ Euler characteristic 3 V3 = χ

Table 1: Minkowski functionals expressed in terms of the corresponding geometric quantities.

This preprint was prepared with the AAS LATEX macros v4.0.
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Fig. 1.— The shapefinders of some convex bodies. The solid line shows the transition from

a ball to a filament to a pancake and back to a ball via triaxial ellipsoids of various shapes.

The dashed line corresponds to cylinders that also undergo the transition from a filament

to a pancake by varying their height. The dots on the spheroid and cylinder curves indicate

typical values of the λ parameter from Equations (3) and (5), respectively.
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Fig. 2.— Minkowski functionals for the evolutionary stage knl = 8 of four different models

with initial power law spectra P (k) ∝ kn. The area between two lines gives the one–sigma

deviations of four realizations from their mean. The solid lines correspond to n = −2, dotted

is n = −1, dash–dotted lines give the results for n = 0, and n = +1 is shown with dashed

lines.
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Fig. 3.— Minkowski functionals for the evolutionary stage knl = 8 of four different models

with initial power law spectra. Line styles are the same as in the previous figure, but instead

of the density threshold δ, the rescaled threshold ν introduced by Gott III et al. (1987) is

used.
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Fig. 4.— The following set of figures compares the global Minkowski functionals of the

whole density field (solid line) to the Minkowski functionals of the largest (dashed) and

second largest (dotted) objects. The areas indicate the mean and standard deviation over

the four realizations of each model. In order to emphasize the region around the percolation

transition, the Minkowski functionals are plotted against the filling factor, which is equal to

the volume enclosed in all isocontours of the global field. In this particular plot, the values
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Fig. 5.— The same tendency as before is visible in this case where n = −1. As before, the

dominance of large networked structures is clearly visible – for example, the Euler character-

istic stays well below zero even for high thresholds, which indicates a spongy structure with

many tunnels in it. However, the networked structures have fewer loops, since they tend to

split up at lower thresholds.
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Fig. 6.— The situation is different in the case n = 0. The largest object splits up rapidly,

and is already simply connected at fairly low density contrast (δ ≈ 0.5). Also, at thresholds

around percolation, the second largest object becomes comparable to the largest one, so the

field is not dominated by a single networked structure, but by several chunks.
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Fig. 7.— The effect described in the previous figure is even more pronounced for n =

+1, since this model is dominated by small–scale structures. Contrary to the models with

negative index n, where the Euler characteristic of the largest object approaches the value

one for a simply connected structure from below, one can even see a small positive peak

around the percolation threshold.
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Fig. 8.— The shapefinder or Blaschke diagram of the model with n = −2. The area of each

dot corresponds to the number of coherent objects whose shapefinders (P,F) lie around the

center of this dot. Note that the shapefinders of all objects at all thresholds are used in the

construction of the diagram. Nevertheless, most information comes from thresholds close to

percolation, where small objects are abundant.
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Fig. 9.— The average planarity shapefinder P as a function of the cluster mass. Line styles

are explained in Figure 2. As in Figure 8, all objects at all thresholds are used to improve

statistics.
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Fig. 10.— This plot shows the same type of distribution as the previous Figure 9, but this

time the average filamentarity shapefinder F is plotted as a function of the cluster mass.

Again, line styles correspond to models as explained in the caption of Figure 2.
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Fig. 11.— The distribution of the planarity shapefinder P. The histogram only includes

objects larger than 10−5 times the simulation box, a value of the order of the smoothing

volume. Note that although theoretically, the value should lie between 0 and 1, measurement

errors lead to negative values. The curves give total numbers of objects per histogram

interval, hence they differ widely in normalization, but still agree reasonably well in shape.

Line styles are explained in Figure 2.
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Fig. 12.— This figure displays the same type of distribution as above, but shows the fila-

mentarity shapefinder F . Line styles are explained in Figure 2.


