272 research outputs found
A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men
We evaluated whether twice daily consumption of a multi-ingredient nutritional supplement (SUPP) would reduce systemic inflammatory markers following 6wk of supplementation alone (Phase 1), and the subsequent addition of 12wk exercise training (Phase 2) in healthy older men, in comparison to a carbohydrate-based control (CON). Tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) concentrations were progressively reduced (P-time<0.05) SUPP group. No change in TNF-α or IL-6 concentrations was observed in the CON group
Altered Peroxisome-Proliferator Activated Receptors Expression in Human Endometrial Cancer
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone receptors acting as transcriptional factors, recently involved also in carcinogenesis. Present study was undertaken to evaluate the presence and subcellular localization of different PPAR isoforms (α, β, γ) in healthy endometrial tissue (n = 10) and endometrial carcinoma (FIGO I, endometrioides type, G1, n = 35). We sought to analyze PPARs mRNA content as well as protein immunohistochemical expression that was further quantified by Western Blot technique. For both PPARα and PPARβ, protein expression was significantly higher in endometrial cancers compared to normal endometrial mucosa. In opposite, PPARγ protein expression was lower in endometrial cancer cells. In each case, immunohistochemical reaction was confined to the perinuclear and/or nuclear region. At the transcriptional level, the content of mRNA of all PPAR subunits did not follow the protein pattern of changes. These results provide evidence for altered PPAR's protein expression and disregulation of posttranslational processes in endometrial cancers
Protein-mediated Fatty Acid Uptake in the Heart
Long chain fatty acids (LCFAs) provide 70-80% of the energy for cardiac contractile activity. LCFAs are also essential for many other cellular functions, such as transcriptional regulation of proteins involved in lipid metabolism, modulation of intracellular signalling pathways, and as substrates for membrane constituents. When LCFA uptake exceeds the capacity for their cardiac utilization, the intracellular lipids accumulate and are thought to contribute to contractile dysfunction, arrhythmias, cardiac myocyte apoptosis and congestive heart failure. Moreover, increased cardiac myocyte triacylglycerol, diacylglycerol and ceramide depots are cardinal features associated with obesity and type 2 diabetes. In recent years considerable evidence has accumulated to suggest that, the rate of entry of long chain fatty acids (LCFAs) into the cardiac myocyte is a key factor contributing to a) regulating cardiac LCFA metabolism and b) lipotoxicity in the obese and diabetic heart. In the present review we i) examine the evidence indicating that LCFA transport into the heart involves a protein-mediated mechanism, ii) discuss the proteins involved in this process, including FAT/CD36, FABPpm and FATP1, iii) discuss the mechanisms involved in regulating LCFA transport by some of these proteins (including signaling pathways), as well as iv) the possible interactions of these proteins in regulating LCFA transport into the heart. In addition, v) we discuss how LCFA transport and transporters are altered in the obese/diabetic heart
Modest Decrease in Pgc1α Results in TAG Accumulation but not in Insulin Resistance in L6 Myotubes
Heart Failure Disturbs Gut–Blood Barrier and Increases Plasma Trimethylamine, a Toxic Bacterial Metabolite
Trimethylamine (TMA) is a gut bacteria product oxidized by the liver to trimethylamine-N-oxide (TMAO). Clinical evidence suggests that cardiovascular disease is associated with increased plasma TMAO. However, little headway has been made in understanding this relationship on a mechanistic and molecular level. We investigated the mechanisms affecting plasma levels of TMAO in Spontaneously Hypertensive Heart Failure (SHHF) rats. Healthy Wistar Kyoto (WKY) and SHHF rats underwent metabolic, hemodynamic, histopathological and biochemical measurements, including tight junction proteins analysis. Stool, plasma and urine samples were evaluated for TMA and TMAO using ultra performance liquid chromatography-mass spectrometry. SHHF presented disturbances of the gut–blood barrier including reduced intestinal blood flow, decreased thickness of the colonic mucosa and alterations in tight junctions, such as claudin 1 and 3, and zonula occludens-1. This was associated with significantly higher plasma levels of TMA and TMAO and increased gut-to-blood penetration of TMA in SHHF compared to WKY. There was no difference in kidney function or liver oxidation of TMA to TMAO between WKY and SHHF. In conclusion, increased plasma TMAO in heart failure rats results from a perturbed gut–blood barrier and increased gut-to-blood passage of TMAO precursor, i.e., TMA. Increased gut-to-blood penetration of bacterial metabolites may be a marker and a mediator of cardiovascular pathology
How Hypertension Affects Heart Metabolism
Hypertension is one of the most frequently observed cardiovascular diseases, which precedes heart failure in 75% of its cases. It is well-established that hypertensive patients have whole body metabolic complications such as hyperlipidemia, hyperglycemia, decreased insulin sensitivity or diabetes mellitus. Since myocardial metabolism is strictly dependent on hormonal status as well as substrate milieu, the above mentioned disturbances may affect energy generation status in the heart. Interestingly, it was found that hypertension induces a shift in substrate preference toward increased glucose utilization in cardiac muscle, prior to structural changes development. The present work reports advances in the aspect of heart metabolism under high blood pressure conditions, including human and the most common animal models of hypertension
The role of chemerin, elafin, and visfatin in the pathogenesis of atopic dermatitis
Atopic Dermatitis is a chronic skin condition characterized by inflammation and itching. It has a genetic component, but environmental factors also play a significant role. The immune system is overactive, leading to an abnormal inflammatory response. Literature data indicate that numerous proteins contribute to the development and progression of atopic dermatitis, like antimicrobial peptides, alarmins, autoantigens, cytokines, growth factors, and proteases. To synthesize current knowledge and identify the most promising contributors of AD pathogenesis a literature search was conducted using PubMed (1990–present), Google Scholar, and Embase, has been performed appropriate search terms. This narrative review summarizes the current knowledge on how elafin, chemerin, and nicotinamide phosphoribosyltransferase (visfatin/NAMPT) contribute to the pathophysiology of skin inflammation in atopic dermatitis. Recent discoveries have highlighted the importance of these proteins as important players in the functioning of the epidermal barrier. Importantly, some proteins exert anti-inflammatory effects (e.g., elafin), some pro-inflammatory effects, such as visfatin/NAMPT or chemerin, which exhibits both pro- and anti-inflammatory properties. This makes them intriguing candidates for modulating the complex inflammatory processes associated with atopic dermatitis. A deeper understanding of the role of these proteins may provide a basis for the development of appropriate treatments for atopic dermatitis. However, knowledge about the importance of these proteins in the pathological mechanisms of atopic dermatitis is still limited
Cannabigerol–A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats?
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders
One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation
Short ( < 10 days) periods of muscle disuse, often necessary for recovery from illness or injury, lead to various negative health consequences. The current study investigated mechanisms underlying disuse-induced insulin resistance, taking into account muscle atrophy. Ten healthy, young males (age: 23 ± 1 years; BMI: 23.0 ± 0.9 kg · m−2) were subjected to 1 week of strict bed rest. Prior to and after bed rest, lean body mass (dual-energy X-ray absorptiometry) and quadriceps cross-sectional area (CSA; computed tomography) were assessed, and peak oxygen uptake (VO2peak) and leg strength were determined. Whole-body insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Additionally, muscle biopsies were collected to assess muscle lipid (fraction) content and various markers of mitochondrial and vascular content. Bed rest resulted in 1.4 ± 0.2 kg lean tissue loss and a 3.2 ± 0.9% decline in quadriceps CSA (both P < 0.01). VO2peak and one-repetition maximum declined by 6.4 ± 2.3 (P < 0.05) and 6.9 ± 1.4% (P < 0.01), respectively. Bed rest induced a 29 ± 5% decrease in whole-body insulin sensitivity (P < 0.01). This was accompanied by a decline in muscle oxidative capacity, without alterations in skeletal muscle lipid content or saturation level, markers of oxidative stress, or capillary density. In conclusion, 1 week of bed rest substantially reduces skeletal muscle mass and lowers whole-body insulin sensitivity, without affecting mechanisms implicated in high-fat diet–induced insulin resistance
Myocardial Lipid Profiling During Time Course of High Fat Diet and its Relationship to the Expression of Fatty Acid Transporters
- …
