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Abstract
Background/Aims: It is well documented that increased fatty acids (FA) supply causes lipid 
accumulation and insulin resistance in skeletal muscles. Whether the same mechanism is 
present in the heart is still unclear. Therefore, the goal of our study was to determine the 
content of specific myocardial lipid fractions during feeding rats a high fat diet (HFD) for 5 
weeks. Moreover, the relation between changes in myocardial lipid content, whole body insulin 
resistance and the expression of fatty acid transporters in each week of HFD was established. 
Methods: Gas liquid chromatography and high performance liquid chromatography were 
used to determine the content of lipid fractions in the left ventricle. Expression of selected 
proteins was estimated by Western blot technique. All measurements were made after each 
week of HFD. Results: As expected, lipid profile in myocardium was altered by HFD in different 
weeks of the study with the most intense changes in triacylglycerols, long chain fatty acid-CoA 
and ceramide. Furthermore, there was a significant elevation of plasmalemmal (the 4th and the 
5th week) and mitochondrial expression (from the 3rd to the 5th week) of fatty acid translocase. 
Conclusion: High fat diet affects myocardial lipid profile in each week of its duration and 
causes alternations in FA metabolism in cardiomyocytes.

Introduction

Maintaining physiological contractile activity of the heart requires substantial energetic 
inputs. Therefore, it is important to supply appropriate amounts of substrates which are 
used in ATP production in cardiomyocytes, i.e. glucose, free fatty acids (FFA), lactate, ketone 
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bodies and amino acids [1, 2]. Free fatty acids, apart from glucose, are the main source of 
energy in working heart, accounting for approximately 50-70% of the energy substrates used 
[1, 3]. Healthy cardiac muscle is characterized by high rates of fatty acids metabolism and 
low myocellular lipids storage, thus supplying FFA to the cardiomyocytes from the plasma 
must be effective [4]. It is well known that blood-born FFA enter the cardiac myocytes both 
by passive diffusion (flip-flop process) and with participation of fatty acid transporting 
proteins. So far, in the heart three types of protein transporters have been identified. They are 
fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm) 
and fatty acid transport proteins (FATP-1, FATP-4 and FATP-6) [5]. There is growing 
evidence that FAT/CD36 plays the pivotal role in regulating fatty acids uptake by cardiac 
myocytes. It was shown in the heart that FAT/CD36 relocates from intracellular depots 
to the sarcolemma, which results in substantial increase in FFA uptake (e.g. after insulin 
treatment or activation of AMP-dependent kinase) [6, 7]. Studies on FAT/CD36 knockout 
mice revealed that fatty acids transport into cardiomyocytes is mainly CD36-dependent due 
to marked reduction of FFA uptake by approximately 70% [8, 9]. Moreover, lack of FAT/
CD36 in animal models also affected lipids metabolism in cardiac and skeletal muscles by 
decreasing β-oxidation [10] and esterification of fatty acids [9]. Results of recent studies 
confirmed that permanent translocation of FAT/CD36 to the sarcolemma and high rates of 
fatty acids uptake result in augmented triacylglycerol (TAG) content in cardiac myocytes 
[11-13]. On the other hand, in skeletal muscles, a strong association between high fat diet 
and the accumulation of intramuscular lipids is quite well established. It is well known that 
insulin resistance in skeletal muscles is caused by elevated content of lipid in myocytes and 
increased plasmalemmal FAT/CD36 expression [14-16]. Whether it occurs in heart and how 
the content of specific lipid fractions might be affected in relation to the duration of high fat 
diet (HFD) is currently less known. Moreover, it is interesting whether there is an association 
between changes in myocardial lipid content and plasmalemmal expression of fatty acid 
transporters in each week of HFD feeding. Additionally, we wanted to check out whether 
there is a temporal association between administration of high fat diet, accumulation of 
myocardial lipids and whole body insulin resistance.

Materials and Methods

Animals and study design
Male Wistar rats (initial body mass ~140 g) were maintained at 20oC on a reversed light-dark cycle 

in approved animal holding facilities. Experiments were carried out after one week of acclimatization of 
the animals. Rats were randomly assigned to one of two dietary groups for 5 weeks; 1) control group, fed 
ad libitum on a standard chow (kcal distribution = 62% carbohydrate, 16% fat and 22% protein; Agropol, 
Motycz, Poland) for rodents, or 2) high fat diet group fed ad libitum on a rodent diet rich in fatty acids (kcal 
distribution = 60% fat, 20% carbohydrate and 20% protein; Research Diet INC, D12492). In our experiment 
two control groups were set at the beginning (the 1st week) and at the end (the 5th week) of the study (instead 
of 6 respectively to each single week of the diet to minimize the number of animals used in experiment in 
accordance with the requirements of local ethical committee on animal care). In these control groups the 
same measurements were made as in HFD groups. There were no significant changes between these two 
control groups, hence the results were referred as one control group (week 0). Body mass was monitored 
throughout the study. At the end of each experimental week (1, 2, 3, 4 and 5) rats (fasted overnight) were 
anaesthetized by intraperitoneal injection of pentobarbital (80 mg per kilo of body weight). Samples of the 
left ventricle were excised, immediately freeze – clamped with aluminum tongs precooled in liquid nitrogen. 
Furthermore, left ventricles were weighted at the end of each week in all groups. There were no significant 
changes in heart weights (% of body mass) in HFD groups compared to the control group (data not shown). 
Blood was collected in heparinized tubes, centrifuged and the plasma was separated. All samples (left 
ventricle and plasma) were stored at -80°C until further analysis. Data from each experimental week are 
based on six independent determinations (n=6). All experimental procedures and the number of animals 
were approved by the ethics committee on animal care at the Medical University of Bialystok.
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Plasma measurements
Concentrations of plasma glucose, insulin and free fatty acids were determined with the use of Accu-

Chek (Bayer, Basel, Switzerland) glucose-meter, Rat Insulin ELISA kit (Mercodia, Uppsala, Sweden) and 
gas-liquid chromatography (GLC), respectively. Concentrations of fasting glucose and insulin were used to 
calculate insulin resistance index (HOMA-IR = fasting glucose (mmol/l) x fasting insulin (µU / ml)/22.5).

Subcellular fractionation of cardiac myocytes
Subcellular fractionation of cardiac myocytes was performed to examine changes in the expression 

of FAT/CD36 and FABPpm at the level of plasma membranes (PM) and low density microsomes (LDM). 
Subcellular fractionation of the left ventricle was performed by using procedures previously described 
[6, 17, 18]. Briefly, after thawing, hearts were thoroughly minced and incubated for 30 min in a high-salt 
solution (2 mol/l NaCl, 20 mmol/l HEPES pH 7.4, 5 mmol/l NaN3 and protease inhibitors) at 4°C. Thereafter, 
the suspension was centrifuged for 5 min at 1000 g and the pellet was homogenized in 6.0 ml TES-buffer 
(20 mmol/l Tris pH 7.4, 1 mmol/l EDTA, 250 mmol/l sucrose and protease inhibitors) using a tightly fitting 
10-ml Potter-Elvejhem glass homogenizer with 10 strokes. The resulting homogenate was centrifuged 
for 5 min at 1000 g, after which the pellet was rehomogenized in 4.0 ml TES-buffer with 10 strokes and 
then recombined with the 1000 g supernatant. The homogenate was centrifuged for 10 min at 100 g. After 
centrifugation resulting pellet (P1) was resuspended in 300 µl TES-buffer and saved. The supernatant was 
centrifuged for 10 min at 5,000 g. Next the pellet (P2) was resuspended in 300 µl TES-buffer and saved. The 
supernatant was centrifuged for 20 min at 20,000 g. The pellet (P3) was resuspended in 300 µl TES-buffer 
and saved. Next the supernatant was centrifuged for 30 min at 48,000 g. The pellet (P4) was resuspended in 
150 µl TES-buffer and saved. The supernatant was centrifuged for 65 min at 250,000 g and received pellet 
(P5) was resuspended in 150 µl TES-buffer and saved. It has been established upon analysis of P1-P5 with 
ATPase sodium/potassium pump (Na+/K+) and glucose transporter 4 (Glut-4), that fractions P2 refers as 
PM-fraction and P5 as LDM-fraction [18, 19].

Isolation of mitochondria
Mitochondria were isolated from the left ventricle by using trypsin digestion method [20, 21]. In brief, 

the left ventricle was minced into small pieces and suspended in 10 ml of isolation buffer (0.3 M sucrose, 
10 mM sodium HEPES, pH 7.2, 0.2 mM EDTA). Next, to the isolation buffer with myocardial tissue trypsin 
was added and samples were incubated for 15 min. After trypsin digestion samples were diluted with 10 
ml of isolation buffer containing bovine serum albumin (BSA) and trypsin inhibitor. The suspension was 
mixed, and the supernatant was discarded. Thereafter, digested myocardial tissue was resuspended in 10 
ml of isolation buffer with BSA and homogenized in glass homogenizer. The resulting homogenate was 
centrifuged for 10 min at 600 g, after which the supernatant was centrifuged again (15 min, 8,000 g). The 
resulting pellet was resuspended in 10 ml of isolation buffer with BSA and centrifuged (15min, 8000 g). 
This step was repeated twice. The final pellet was resuspended in 500 µl of isolation buffer with BSA. Low 
temperature (4°C) was maintained at each step of the procedure.

Immunoblotting
Routine Western blotting procedure was applied to detect proteins expression in myocardial plasma 

membranes, low density microsomes and mitochondria as it was described previously [22]. In all samples 
protein concentration was determined by using the bicinchonic acid method (BCA) with BSA as a standard. 
Briefly, after SDS poliacrylamide gel electrophoresis and transfer the membranes were incubated with 
primary antibodies FAT/CD36 (Abcam, UK), FABPpm (a gift from Dr. Calles-Escandon), cytochrome c 
oxidase (COX-4) and β-actin (Cell Signaling Technology, USA), β-hydroxyacyl-CoA dehydrogenase (β-HAD) 
(Santa Cruz Biotechnology, USA). Signals obtained by immunoblotting were quantified densitometrically 
using a ChemiDoc visualization system (Bio Rad, Warsaw, Poland). Equal protein concentrations were 
loaded in each lane which was also confirmed by staining Ponceau S. Protein expression was standardized 
to β-actin expression and the control group was set as 100%. Additionally, purity of isolated PM and LDM 
from the left ventricle was confirmed by measuring the expression of ATP-ase Na+/K+ and Glut-4 (Santa 
Cruz Biotechnology, USA) according to Fuller et al. [18]. Furthermore, plasmalemmal and intramyocellular 
content of fatty acid transporters was standardized to ATP-ase Na+/K+ (PM fraction) and Glut-4 (LDM 
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fraction) expression, respectively. Moreover, the purity of mitochondria was confirmed by measuring the 
expression of COX-4 (Cell Signaling Technology, USA).

Intramyocardial lipid analyses
The samples of the left ventricle were powdered and lipids were extracted in a chloroform-methanol 

solution according to the Folch method [23]. Lipid fractions of phospholipids (PL), FFA, diacylglycerols 
(DAG) and TAG were separated using thin-layer chromatography (TLC) [24]. Individual fatty acid methyl 
esters were identified and quantified according to the retention times of standards by GLC (Hewlett-Packard 
5890 Series II gas chromatograph, HP-INNOWax capillary column). Total PL, FFA, DAG and TAG content was 
estimated as the sum of the particular fatty acid species of the assessed fractions and it was expressed in 
nanomoles per gram of tissue.

The content of ceramide (CER) was determined by using high performance liquid chromatography 
(HPLC) system as it was described previously [25]. Briefly, samples of the left ventricle were homogenized 
and lipids were extracted into chloroform. An aliquot of the lipid extract was transferred to a fresh tube with 
pre-added 40 pmol of N-palmitoyl-D-erythro-sphingosine (C17 base) (a kind of gift from Dr Z. Szulc, Medical 
University of South Carolina) as an internal standard. Thereafter, the samples were subjected to alkaline 
hydrolysis to deacylate ceramide. Free sphingosine released from ceramide was then converted to their 
o-phthalaldehyde derivatives and analyzed using a HPLC system equipped with a fluorescence detector and 
C18 reversed-phase column (Varian Inc. OmniSpher 5, 4.6 × 150 mm). The chloroform extract used for 
measurement of ceramide also contained small amounts of free sphingoid bases. Therefore, the content 
of ceramide was corrected for the level of free sphingosine determined in the same sample. Prior to the 
sphingolipid analysis, the protein content was measured in all samples with BSA as a standard and ceramide 
content was expressed in nanomoles per mg of the protein.

Content of long-chain fatty acyl-CoA (LCFA-CoA)
Total content of LCFA-CoA was estimated as it was described previously in details [25]. In brief, the 

amount of LCFA-CoA was measured indirectly after hydrolysis to free CoA according to the method of 
Ingebretsen et al. [26]. The samples of the left ventricle were homogenized in ice-cold 6% perchloric acid 
and centrifuged (10 min, 1600 g). Next, received pellet containing LCFA-CoA was washed twice with 0.6% 
perchloric acid and water, respectively. The pellet was resuspended by ultrasonication in water and 1.77 
M KOH and incubated (60 min, 55°C). After incubation samples were cooled and 0.5 M triethanolamine-
HCl in 6% perchloric acid was added. Thereafter, samples were centrifuged (10 min, 5200 g), 100 µl of 
the supernatant was injected into the column (Varian Inc. OmniSpher 5, 4.6 × 150 mm) and the content of 
released CoA was estimated with the HPLC system equipped with a UV detector using gradient elution. The 
content of LCFA-CoA in all samples was expressed in nanomoles per mass of wet tissue.

Statistical analyses
All data are expressed as mean values ± SEM. Statistical difference between groups was tested with 

analyses of variance and appropriate post hoc tests, or with a Student t-test using Statistica version 10 
(StatSoft, Krakow, Poland). Results were considered statistically significant at P<0.05.

Results

Effect of HFD feeding on plasma glucose, insulin, HOMA-IR and free fatty acids
We observed significant increase in plasma glucose concentration by + 33.3% (P<0.05) 

in the fourth week and by + 51.3% (P<0.05) in the fifth week HFD compared to the control 
group (Fig. 1A). At the same time we noticed a substantial increase in insulin concentration 
by + 299.3% (P<0.05) in the fourth week and by + 269% (P<0.05) in the fifth week HFD 
in comparison with animals fed on standard chow (Fig. 1B). As expected, HOMA-IR, was 
increased at the end of feeding animals with HFD compared to the control group (the 4th 
week: +483.1%; the 5th week: +581.3%, P<0.05, Fig. 1C). Interestingly, high fat diet had no 
effect on the plasma concentration of free fatty acids (Fig. 1D).
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Effect of HFD feeding on plasmalemmal and intramyocardial expression of FAT/CD36 and 
FABPpm in the left ventricle
Feeding on HFD caused a relocation of FAT/CD36 from intracellular compartments to 

the plasma membranes observed at the end of the fourth and the fifth week compared to the 
control group (PM, + 21.0% and + 23.5%, P<0.05, Fig. 2A, respectively). Moreover, there was a 
decreasing tendency of intramyocardial expression of FAT/CD36 in low density microsomes 
during time course of HFD, although it did not reach significant level (P > 0.05, Fig. 2C). On 
the other hand, plasmalemmal and intramyocellular expression of FABPpm remained stable 
during each week of HFD regime (P>0.05, Fig. 2B and 2D).

Effect of HFD feeding on mitochondrial expression of FAT/CD36 and COX-4 in the left 
ventricle
Mitochondrial expression of FAT/CD36 increased at the end of the third week on HFD 

(the 3rd week: + 22.2%; the 4th week: + 49.4%; the 5th week: + 22.0%, P < 0.05, Fig. 3A). 
Whereas, the content of β-HAD protein was significantly elevated as early as at the end of the 
first week and remained considerably increased in the following weeks of the experiment 
compared to the control group (the 1st week: + 47.1 %; the 2nd week: + 65.4%; the 3rd week: 
+ 28.6%; the 4th week: + 46.7% and the 5th week: + 32%, P<0.05, Fig. 3B). However, we did 
not notice any changes in mitochondrial expression of COX-4 during HFD compared to the 
control group (P>0.05, Fig. 3C).

Effect of HFD feeding on myocardial lipid content (FFA, DAG, PL, TAG, CER and LCFA-CoA)
A trend towards increase in myocardial level of FFA was observed during HFD regime, 

but only in the fifth week the significance was reached (+ 109.4%, P < 0.05, Fig. 4A). We did 
not notice any substantial changes in the level of DAG fraction (P > 0.05, Fig. 4B), whereas 

Fig. 1. Concentration of glucose (A), insulin (B) and free fatty acids (D) in plasma. HOMA-IR (C) was calcu-
lated by using plasma values of glucose and insulin. The data are expressed as the mean ± SEM and are based 
on six independent determinations (n=6). White dots are referred as Control group (week 0) and black dots 
as HFD groups from each experimental week (1, 2, 3, 4 and 5). * P <0.05 significant difference: Control group 
vs. HFD groups.
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the content of PL in cardiac muscle was affected by HFD in each week with the considerable 
increase in the second and the third week in comparison with the standard chow (+ 25.9% 

Fig. 2. Expression of FAT/CD36 (A and C) and FABPpm (B and D) in plasma membranes (PM) and low 
density microsomes (LDM) in myocardium after high fat feeding, respectively. The data are expressed as the 
mean ± SEM and are based on six independent determinations (n=6). Light grey dots are referred as PM and 
black dots as LDM in HFD groups (week 1, 2, 3, 4 and 5). White dots are referred as Control group. * P <0.05 
significant difference: Control group vs. HFD groups.

Fig. 3. Mitochondrial expression of FAT/CD36 (A), 
β-HAD (B) and COX-4 (C) in myocardium after high 
fat feeding. The data are expressed as the mean ± 
SEM and are based on six independent determina-
tions (n=6). White dots are referred as Control group 
(week 0) and dark grey dots as HFD groups from 
each experimental week (1, 2, 3, 4 and 5). * P <0.05 
significant difference: Control group vs. HFD groups.
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and + 19.5%, P < 0.05, Fig. 4C, respectively). We recorded marked increase in the level of TAG 
in the left ventricle in all groups on HFD, with the exception for the third week compared to 
the control group (the 1st week: + 48.1%; the 2nd week: + 38.8%; the 4th week: + 36.1% and 
the 5th week: + 65.2%, P < 0.05, Fig. 4D, respectively). Similarly to TAG fraction, the content 
of intramyocardial LCFA-CoA was substantially elevated in the third, fourth and fifth week 
on HFD (+ 34.8%, + 23.2% and + 25.4%, P < 0.05, Fig. 4F, respectively). Content of CER in the 
left ventricle increased significantly only at the end of our study (the 4th week: + 25.2% and 
the 5th week: + 31.0%, P < 0.05, Fig. 4E).

Discussion

The purpose of our study was to assess how high availability of fatty acids affects 
myocardial lipid profile in rats fed on HFD for 5 weeks. Furthermore, all the measurements 
were made after each week of HFD, as we wanted to establish the exact time of imbalance 
in lipid metabolism in cardiac muscle. Moreover, we determined the presence of temporal 
association between the content of lipids in the left ventricle and the expression of fatty acid 
transporters at the plasma membranes (FAT/CD36, FABPpm) and mitochondria (FAT/CD36) 
during feeding on HFD. The data presented herein show that feeding rats a HFD reduces whole 
body insulin sensitivity at the end of diet regime (the 4th and the 5th week). Besides, excess 
lipid supply probably increases FFA utilization (β-oxidation and esterification) and affects 
significantly lipid content in cardiac muscle in different weeks of the study, particularly by 
elevating intramyocardial TAG, LCFA-CoA, CER, and FFA fraction. Similarly, the expression 
of a key fatty acid transporter, FAT/CD36, also increased both in plasma membrane and 
mitochondria in the fourth and the fifth week of HFD. To sum up, our data indicate that 

Fig. 4. Myocardial content of free fatty acids (A), diacylglycerol (B), phospholipids (C), triacylglycerol (D), 
ceramide (E) and long chain fatty acids-CoA (F). The data are expressed as the mean ± SEM and are based 
on six independent determinations (n=6). White dots are referred as Control group (week 0) and black dots 
as HFD groups from each experimental week (1, 2, 3, 4 and 5). * P <0.05 significant difference: Control group 
vs. HFD groups.
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increased fatty acids supply causes concomitant elevation of fatty acid uptake by cardiac 
myocytes and alternations in metabolism of intramyocardial lipid fractions. We may assume 
that changes in myocardial lipid profile and utilization of fatty acids probably precedes the 
occurrence of hypertrophy of cardiac muscle, functional disturbances and heart failure (i.e. 
lipotoxicity).

Probably, significant elevation of FAT/CD36 expression at plasma membrane of 
cardiomyocytes at the end of the study increased fatty acid uptake in the left ventricle. 
Our data are in line with other animal models of obesity, insulin resistance and diabetes 
such as obese Zucker rats [12, 27, 28], db/db mice [13] and high fat diet rats [11]. In these 
studies it was shown that rise in fatty acid uptake resulted from abundance of FAT/CD36 at 
plasma membrane and permanent relocation of the transporter from intracellular depots 
to the sarcolemma of cardiac myocytes, which is consistent with our results (the 4th and 
the 5th week). Moreover, in these animal models it was demonstrated that there is a close 
association between increased plasmalemmal expression of FAT/CD36, fatty acid uptake and 
the intracellular accumulation of TAG in cardiomyocytes. In our present study we have also 
observed similar interdependence due to concomitant elevation of FAT/CD36 at sarcolemma 
and increased content of intramyocardial TAG, however it was seen only at the end of the 
HFD feeding (the 4th and the 5th week). Some authors indicate elevation of plasmalemmal 
FAT/CD36, as one of the main factors contributing to the accumulation of lipids in rat heart 
[12, 29] and precede the development of cardiac contractile dysfunction [11]. Yang et al. 
[30] have shown that FAT/CD36 deficiency in mice with cardiac specific overexpression of 
PPARα prevents intramyocardial lipid accumulation and cardiac dysfunction. Furthermore, 
another studies demonstrated that elevated influx of FFA into the cardiomyocytes enhanced 
the rate of β-oxidation, but when the cytoplasmic content of FFA exceeded the demands of 
the cells, there was a shift towards esterification and intracellular accumulation of lipids 
instead of β-oxidation process [31, 32]. Our observations indicate that after the third week 
of feeding on HFD, the balance between FAA uptake and oxidation is disrupted and the 
amount of intracellular LCFA-CoA exceeds the capacity of cardiac myocytes for its utilization. 
Furthermore, throughout the study there was a significant increase in expression of β-HAD 
protein. This indicates that probably each experimental week had elevated β-oxidation of 
fatty acids. Despite these changes, suggesting increased FA β-oxidation it appears that FA 
influx overcome oxidative capacity of cardiac myocytes and the accumulation of TAG and 
other lipid intermediates has occurred. Moreover, our results are in agreement with previous 
reports [13, 33, 34] in which db/db mice exhibited enhanced oxidation of lipids without any 
parallel changes in plasma concentrations of FFA or marker enzymes involved in β-oxidation 
process and mitochondrial electron transport chain in cardiomyocytes. Although we did 
not notice any changes in mitochondrial expression of COX-4 during HFD time course, the 
expression of mitochondrial FAT/CD36 and β-HAD was considerably augmented, which 
may suggest that oxidation of lipids in cardiomyocytes was enhanced. What is more, recent 
studies are also contradictory in terms of number of mitochondria, their morphology and 
respiratory function in the heart in animal models of insulin resistance, obesity and Type 
2 diabetes [28, 35, 36]. At present, there are only a few contradictory reports obtained 
from rodent studies on the role of FAT/CD36 in cardiac [37] and skeletal muscles [38, 
39] mitochondria. Nevertheless, there is some evidence confirming the presence of this 
transporter on the outer mitochondrial membrane in skeletal [39] and cardiac muscles 
[37] and functional contribution of FAT/CD36 to the regulation of mitochondrial fatty acid 
oxidation in response to various metabolic challenges [39, 40]. The study by King et al. 
[37] also revealed that mitochondrial content of FAT/CD36 in the heart is 10-fold greater 
compared to skeletal muscles, which may confirm remarkable role of this transporter in the 
regulation of lipid oxidation in the heart. Summing up, we may assume that considerable and 
progressive accumulation of myocardial lipid from the end of the third week of feeding rats 
a HFD probably was caused by lipid overload despite enhanced β-oxidation.

Furthermore, it is well known that insulin by activating PI3 kinase pathway is able to 
induce translocation of FAT/CD36 (not FABPpm) to the sarcolemma thereby increasing fatty 
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acid influx into the cardiomyocytes [19, 41]. It is very likely that in our study and similar 
models of insulin resistance [27] elevated expression of FAT/CD36 at the sarcolemma of 
cardiomyocytes (the 4th and the 5th week of HFD) resulted from increased translocation 
of FAT/CD36 to the plasma membrane due to significantly high concentrations of plasma 
insulin at the same time. Moreover, recent reports have indicated that increased basal Akt 
activity during HFD feeding [11] as well as PPARs activation [17] may be responsible for 
the permanent relocation of FAT/CD36 from intracellular compartments to the plasma 
membrane in the heart. Surprisingly, plasmalemmal expression of FABPpm in the left 
ventricle in contrast to FAT/CD36 did not change throughout five weeks of feeding rats a 
HFD, which is consistent with some other reports related to insulin resistance state (ZDF 
rats) [42]. Probably, lack of alternations in expression of FABPpm resulted from unchanged 
concentration of free fatty acids in plasma and insensitivity of this transporter to insulin 
stimulation [19].

Many studies performed on rodent and human skeletal muscle demonstrated that 
elevated levels of myocardial CER, DAG, FFA and LCFA-CoA apart from TAG fraction are toxic 
and detrimental [5]. Whether increased levels of lipid intermediates in myocardium impair 
glucose metabolism and cause cardiac dysfunction is currently unknown. In our study, we 
did notice that significant elevation of myocardial LCFA-CoA (from the 3rd to the 5th week) 
coincides with the increased plasmalemmal and mitochondrial expression of FAT/CD36. 
In physiological state most of cytoplasmic LCFA-CoA are preferentially directed towards 
β-oxidation. However, overload of LCFA-CoA may lead to enhanced esterification of fatty 
acids to TAG, DAG and CER fraction [43]. Therefore, increased content of LCFA-CoA in the 
left ventricle (from the 3rd to the 5th week) is another evidence for alternations in lipids 
utilization and accumulation of TAG and other lipid metabolites in response to HFD. Most 
data indicate that TAG is an inert fraction and has no influence on insulin signaling pathway 
and glucose metabolism in lipid overloaded heart and skeletal muscles. Additionally, the level 
of intramyocellular TAG is in equilibrium with other lipid intermediates (e.g. DAG and CER). 
Nevertheless, increased intracellular TAG probably may disrupt contractile activity of cardiac 
muscle [43]. Moreover, it is well known that in skeletal muscles DAG as well as CER is able to 
induce insulin resistance, thereby inhibiting glucose transport into the myocytes. Whether 
the same mechanism is present in the heart and is responsible for induction of myocardial 
insulin resistance is still unclear. However, it has been recently shown that elevated content 
of DAG is one of the potential causes of induction of myocardial insulin resistance in mice 
fed on HFD for 10 weeks as a result of activating protein kinase C (PKC), thereby inhibiting 
insulin signaling and reducing glucose oxidation in cardiomyocytes [44]. In our study DAG 
content was slightly elevated during each week on HFD. It suggests that the impact of this 
lipid fraction on glucose metabolism was minor. However, we did observe a marked increase 
of myocardial ceramide content (the 4th and the 5th week), which probably resulted from 
elevated intramyocellular content of LCFA-CoA in the left ventricle at that time. There are 
a few contradictory reports regarding increased myocardial content of ceramide and its 
potentially harmful effects on functioning of cardiomyocytes (i.e. activation of apoptosis). 
In vivo (ZDF rats) [45] and in vitro (isolated rat cardiomyocytes) [46] studies revealed that 
elevated level of myocardial ceramide was the main cause of induction of apoptosis in lipid 
overload state. However, the data were not confirmed in chronically fed rats (diet rich in 
saturated fatty acids) [47]. Hence, a mechanism by means of ceramide induces apoptosis 
in cardimyocytes in its early stage of development remains unclear and requires further 
elucidation.

In conclusion, this study has demonstrated for the first time that HFD in each week 
of its duration causes changes in the lipid profile in cardiac muscle. Dietary fatty acids 
significantly affected myocardial lipid metabolism (from the 3rd to the 5th week) mostly by 
elevating the content of TAG, LCFA-CoA, CER and FFA fraction. It is likely that at the end of 
the third week of HFD the amount of intramyocellular LCFA-CoA exceeded cardiac myoctes 
β-oxidation capacity and progressive myocardial lipid accumulation began. Probably, these 
alternations in lipid utilization may disrupt glucose metabolism and eventually may lead to 
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lypotoxicity and cardiomyopathy. Whether changes in cardiac lipid profile are detrimental 
for the functioning of the heart requires further investigation.
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