170 research outputs found

    Pion interferometry at RHIC: probing a thermalized quark-gluon-plasma?

    Get PDF
    We calculate the Gaussian radius parameters of the pion-emitting source in high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons. Such a model leads to a very long-lived dissipative hadronic rescattering phase which dominates the properties of the two-pion correlation functions. The radii are found to depend only weakly on the thermalization time tau i, the critical temperature T c (and thus the latent heat), and the specific entropy of the QGP. The dissipative hadronic stage enforces large variations of the pion emission times around the mean. Therefore, the model calculations suggest a rapid increase of R out/R side as a function of K T if a thermalized QGP were formed

    Stable isotopic insight into pelagic carbon cycling in Loch Lomond: a large, temperate latitude lake.

    Get PDF
    Lakes play an important role in biosphere carbon dynamics. Though proportionally they constitute a small surface feature on the planet, in many cases lakes are subject to significant subsidies of organic material from their catchments. This input of allochthonous organic material, in addition to autochthonous organic material, has shown that lakes, particularly in temperate and boreal zones, can be heterotrophic systems and as such are net producers of CO2. Thus, understanding the magnitude of fluxes of carbon through these limnetic systems is important if their contribution to ecosystem / global carbon dynamics is to be elucidated. In this research two separate field campaigns were undertaken with the goal of understanding if, and exactly how significant secondary (bacterial) production utilising allochthonous carbon is to overall pelagic production in Loch Lomond, Scotland. Stable isotopic composition of dissolved inorganic carbon (DIC), dissolved oxygen (DO), dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), along with their respective concentrations, were measured in a temporal and spatial survey. Range in [DIC] and δ13CDIC was consistent with that predicted by the shifting balance between autotrophic and heterotrophic pathways. [DIC] peaked in the summer / autumn (0.27 ± 0.09 and 0.17 ± 0.05 mM, south and north basins respectively), reflecting a period when bacterial processing of allochthonous material is high, and thus so is CO2 production. This effect was more pronounced in the mesotrophic south basin of the lake, compared to the oligotrophic north. Surface waters in the south, middle and north basins were generally saturated in CO2 beyond atmospheric equilibrium and thus sources of CO2 to the atmosphere. δ13CDIC and δ18ODO exhibited seasonal and spatial variability, probably also a result of changing metabolic balance and inflow characteristics. Spring / summer peaks in δ13CDIC (-5.1‰ epilimnion maximum) are indicative of photosynthetic incorporation, and vice versa in the autumn / winter (-13‰ hypolimnion minimum) points towards respiratory dominance. δ18ODO is enriched during respiratory utilisation and peaks in the autumn / winter months. Depletion in δ13CDIC coupled to concurrent enrichment in δ18ODO observed with increasing depth (particularly during lake stratification) is assumed to again be a result of a shift in metabolic process dominance from autotrophic to heterotrophic (Myrbo and Shapley 2006). Spatial variability was consistent with the varying trophic states between basins, e.g., most enriched δ13CDIC was recorded in the more productive south basin compared to the middle or north. Dissolved organic carbon concentration also changed with position in the lake. Highest concentrations in the south basin were linked to a shallow gradient catchment, draining base rich soils and agricultural land, compared to the steep sloped, base-poor catchment in the north. The greater quantities of dissolved organic carbon in the south suggested that if bacterial processing of allochthonous material was significant it would likely be most prevalent in the south. During the spatial survey consistent and significant heterogeneity in DIC, DO and DOC was recorded. Although the same degree of variability may not be associated with other, more mophometrically / hydrologically simple lakes, this work has shown consideration of this possibility is advisable. The second field campaign used direct measurements of algal and bacterial productivity, using labelled stable isotope incorporation methods, to elucidate the balance between autotrophic and heterotrophic processes. Primary production (PP) followed a predictable seasonal pattern, peaking in the spring and remaining relatively high until autumn. During this period primary production generally exceeded bacterial production (BP) per litre. During the winter this pattern was reversed. Using integrated estimates of both PP and BP this work showed that BP exceeded PP in the pelagic zone for the majority of the year, and over much of the lake’s extent. Even in the epilimnion BP was regularly the more significant process through the water column, and thus it is concluded Loch Lomond is a heterotrophic system and a likely source of CO2 to the atmosphere. The PP: BP ratio ranged from 0.6 – 0.8 in the north basin, and 0.4 to 0.6 in the south. On average for the whole lake, bacterial production exceeded primary production by between 2,700 and 4,400 kg C day-1. In total it was estimated that PP processes approximately 970 tonnes of carbon per year and BP between 2,300 and 2,800 tonnes of carbon per year. The proportion of total pelagic production fuelled by bacterial utilisation of allochthonous carbon changed throughout the year. During peaks of PP in the spring and summer much of the bacterial carbon demand was met by autochthonous supply. During the autumn / winter allochthonous carbon utilisation dominated pelagic production and regularly contributed over 90% of total pelagic production. Combining estimated quantities of allochthonous carbon utilised in the north and south basins per m2 (the middle basin taken as an intermediate between the two) and combining it with GIS data on lake volume, the total quantity of terrestrially derived carbon processed in Loch Lomond was estimated at approximately 3,300 ± 2,100 kg Callo day-1. Both spatial and temporal surveys of natural abundance stable isotope ratios, along with concurrent measurements of algal and bacterial production, have provided substantial evidence for the importance of allochthonous carbon in Loch Lomond. Even minimum estimates imply a system dominated by bacterial production, fuelled by a proportionally high quantity of terrestrial material, thus producing excess CO2, and potentially fluxing CO2 to the atmosphere

    Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary

    Get PDF
    We discuss a model for the space-time evolution of ultrarelativistic heavy-ion collisions which employs relativistic hydrodynamics within one region of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the complement. Our initial condition consists of a quark-gluon plasma which expands hydrodynamically and hadronizes. After hadronization the solution eventually changes from expansion in local equilibrium to free streaming, as determined selfconsistently by the interaction rates between the hadrons and the local expansion rate. We show that in such a scenario the inverse slopes of the mT -spectra of multiple strange baryons ( Xi,Omega) are practically una ected by the purely hadronic stage of the reaction, while the flow of p's and Lambda's increases. Moreover, we find that the rather soft transverse expansion at RHIC energies (due to a first-order phase transition) is not washed out by strong rescattering in the hadronic stage. The earlier kinetic freeze-out as compared to SPS-energies results in similar inverse slopes (of the mT -spectra of the hadrons in the final state) at RHIC and SPS energies

    Direct photons in Pb+Pb at CERN-SPS from microscopic transport theory

    Get PDF
    Direct photon production in central Pb+Pb collisions at CERN-SPS energy is calculated within the relativistic microscopic transport model UrQMD, and within distinctly di erent versions of relativistic hydrodynamics. We find that in UrQMD the local momentum distributions of the secondaries are strongly elongated along the beam axis initially. Therefore, the preequilibrium contribution dominates the photon spectrum at transverse momenta above H 1.5 GeV. The hydrodynamics prediction of a strong correlation between the temperature and radial expansion velocities on the one hand and the slope of the transverse momentum distribution of direct photons on the other hand thus is not recovered in UrQMD. The rapidity distribution of direct photons in UrQMD reveals that the initial conditions for the longitudinal expansion of the photon source (the meson fluid ) resemble rather boostinvariance than Landau-like flow

    Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions

    Get PDF
    We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and di er drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the is found to be emitted rather close to the phase boundary and shows the smallest freeze- out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies

    Nucleus-nucleus collisions at highest energies

    Get PDF
    The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity

    Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties

    Get PDF
    Priming of soil organic carbon (SOC) is a crucial factor in ecosystem carbon balance. Despite its increasing importance in the changing global climate, the extent of influence of temperature and soil properties on the priming effect remains unclear. Here, soil priming was investigated using 13C labeled wheat residues in two cultivated, subtropical (Vertisol) and semi-arid (Luvisol), soils of Australia at four incubation temperatures (13, 23, 33 and 43 °C). The priming effect was computed from respired CO2 and associated δ13C, which were measured periodically over the 52-day incubation period. Wheat residue addition resulted in greater priming effect in the Luvisol (1.17 to 2.37% of SOC) than the Vertisol (0.02 to 1.56% of SOC). The priming of SOC was the highest at 23 °C in the Luvisol, and at 43 °C in the Vertsiol, which indicates a variable positive priming effect of temperature in different soil types. Wheat residue addition significantly increased the temperature sensitivity (Q10) of SOC mineralization in the Vertisol at temperature ranges below 33 °C (i.e., 13–23 and 23–33 °C) and had no significant effect in the Luvisol. A negative correlation was observed between temperature and the Q10 values. Across soils, the Q10 of residue C was lower than SOC suggesting that soil C is more vulnerable to climatic warming. This work demonstrates that the magnitude of SOC priming by wheat residue and Q10 of SOC mineralization varied significantly with soil type (Luvsiol > Vertisol) and incubation conditions (temperature and time). Given the current trend towards increasing atmospheric temperatures, future studies should evaluate temperature effects on the priming of different pools of SOC induced by crop residue in different agro-ecosystems

    Distinguishing hadronic cascades from hydrodynamic models in Pb(160 AGeV)+Pb reactions by impact parameter variation

    Get PDF
    We propose to study the impact parameter dependence of the anti-Lambda/anti-Proton ratio in Pb(160AGeV)+Pb reactions. The anti-Lambda/anti-Proton ratio is a sensible tool to distinguish between hadronic cascade models and hydrodynamical models, which incorporate a QGP phase transition

    Dissolved organic carbon export in a small, disturbed peat catchment: insights from long-term, high-resolution, sensor-based monitoring

    Get PDF
    Understanding dissolved organic carbon (DOC) export dynamics from carbon-rich environments is critical. Peatlands act as terrestrial carbon stores, and consequently supply substantial amounts of DOC to drainage. This DOC flux is temporally heterogeneous and subject to long- and short-term variability. Ultrahigh temporal resolution sampling (< hourly) is still in-frequent in peatland catchments. We used a field-deployable —ultraviolet–visible light spectrometer (Spectro::lyser™) and monitored DOC flux from a temperate peatland over 31 months to examine seasonal and event dynamics. DOC concentration varied from 6.8 to 63.5 mg L−1, in the higher reported range for peatlands and showed clear seasonal (high-summer, low-winter) variability coinciding with elevated biological productivity in the peatland. Discharge was an unreliable predictor of instantaneous DOC concentration overall, with antecedent water temperatures proving the most reliable predictor overall. Discharge drove total DOC export in the catchment, where the top 10% of flow events, accounted for 41.3% of all DOC exported—increasing to 84.6% in the top 50% of flow events. Total estimated catchment DOC flux was sensitive to measurement frequency: increasing from every 30 min to daily altered export estimates by < 1%, increasing to > 10% at 1-week intervals. The variation in estimated flux increased approximately linearly with reduced sampling frequency, reaching > 40% at monthly intervals. High-resolution data reveal the large amount of within-site complexity of DOC export dynamics in a temperate peatland and provide evidence on the subsequently recommended sampling frequency for the future elucidation of detailed DOC budgets in these environments

    Anthropogenic-estuarine interactions cause disproportionate greenhouse gas production: a review of the evidence base

    Get PDF
    Biologically productive regions such as estuaries and coastal areas, even though they only cover a small percentage of the world's oceans, contribute significantly to methane and nitrous oxide emissions. This paper synthesises greenhouse gas data measured in UK estuary studies, highlighting that urban wastewater loading is significantly correlated with both methane (PÂ <Â 0.001) and nitrous oxide (PÂ <Â 0.005) concentrations. It demonstrates that specific estuary typologies render them more sensitive to anthropogenic influences on greenhouse gas production, particularly estuaries that experience low oxygen levels due to reduced mixing and stratification or high sediment oxygen demand. Significantly, we find that estuaries with high urban wastewater loading may be hidden sources of greenhouse gases globally. Synthesising available information, a conceptual model for greenhouse gas concentrations in estuaries with different morphologies and mixing regimes is presented. Applications of this model should help identification of estuaries susceptible to anthropogenic impacts and potential hotspots for greenhouse gas emissions
    • …
    corecore