139 research outputs found
Enhanced nighttime fog and low stratus occurrence over the Landes forest, France
Understanding the drivers of fog and low stratus (FLS) cloud occurrence is important for traffic, ecosystems and climate models, but challenging to analyze due to the complex interactions between meteorological factors and land cover. Here, we use active and passive satellite data, as well as reanalysis data to investigate nighttime FLS occurrence over the expansive Landes forest in France from 2006-2015. We find significant FLS enhancement over the forest compared to surrounding areas, especially in summer and fall. Lower wind speed and lower temperatures are found over the forest at night, which can enhance FLS development over the forest. Still, other drivers, such as biovolatile organic compounds acting as cloud condensation nuclei, are most likely important as well. The results show that the influence of forests on boundary layer clouds is not limited to convective daytime conditions
Rainfall simulator experiments to investigate macropore impacts on hillslope hydrological response
Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents 'macropores' because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning macropores and hillslope hydrology.</p
Land-atmospheric feedbacks during droughts and heatwaves : state of the science and current challenges
Droughts and heatwaves cause agricultural loss, forest mortality, and drinking water scarcity, especially when they occur simultaneously as combined events. Their predicted increase in recurrence and intensity poses serious threats to future food security. Still today, the knowledge of how droughts and heatwaves start and evolve remains limited, and so does our understanding of how climate change may affect them. Droughts and heatwaves have been suggested to intensify and propagate via land-atmosphere feedbacks. However, a global capacity to observe these processes is still lacking, and climate and forecast models are immature when it comes to representing the influences of land on temperature and rainfall. Key open questions remain in our goal to uncover the real importance of these feedbacks: What is the impact of the extreme meteorological conditions on ecosystem evaporation? How do these anomalies regulate the atmospheric boundary layer state (event self-intensification) and contribute to the inflow of heat and moisture to other regions (event self-propagation)? Can this knowledge on the role of land feedbacks, when available, be exploited to develop geo-engineering mitigation strategies that prevent these events from aggravating during their early stages? The goal of our perspective is not to present a convincing answer to these questions, but to assess the scientific progress to date, while highlighting new and innovative avenues to keep advancing our understanding in the future
Saturated areas through the lens: 2. Spatio-temporal variability of streamflow generation and its relationship with surface saturation
Investigating the spatio-temporal variability of streamflow generation is fundamental to interpret the hydrological and biochemical functioning of catchments. In humid temperate environments, streamflow generation is often linked to the occurrence of near stream surface saturated areas, which mediate hydrological connectivity between hillslopes and streams. In this second contribution of a series of two papers, we used salt dilution gauging to investigate the spatio-temporal variability of streamflow in different subcatchments and for different reaches in the Weierbach catchment (0.42 km2) and explored the topographical controls on streamflow variability. Moreover, we mapped stream network expansion and contraction dynamics. Finally, we combined the information on the spatio-temporal variability of streamflow with the characterization of riparian surface saturation dynamics of seven different areas within the catchment (mapped with thermal infrared imagery, as presented in our first manuscript). We found heterogeneities in the streamflow contribution from different portions of the catchment. Although the size of the contributing area could explain differences in subcatchments' and reaches' net discharge, no clear topographic controls could be found when considering the area-normalized discharge. This suggests that some local conditions exert control on the variability of specific discharge (e.g., local bedrock characteristics and occurrence of perennial springs). Stream network dynamics were found not to be very responsive to changes in catchment's discharge (i.e., total active stream length vs. stream outlet discharge relationship could be described through a power law function with exponent = 0.0195). On the contrary, surface saturation dynamics were found to be in agreement with the level of streamflow contribution from the correspondent reach in some of the investigated riparian areas. This study represents an example of how the combination of different techniques can be used to characterize the internal heterogeneity of the catchment and thus improve our understanding of how hydrological connectivity is established and streamflow is generated.</p
Saturated areas through the lens: 1. Spatio-temporal variability of surface saturation documented through thermal infrared imagery
Surface saturated areas are key features in generating run-off. A detailed characterization of the expansion and contraction of surface saturation in riparian zones and its connectivity to the stream is fundamental to improve our understanding of the spatial and temporal variability of streamflow generation processes. In this first contribution of a series of two papers, we used ground-based thermal infrared imagery for characterizing riparian surface saturation seasonal dynamics of seven different riparian areas in the Weierbach catchment (0.42 km2), a small forested catchment in Luxembourg. We collected biweekly panoramic images of the seven areas over a period of 2 years. We identified the extension of saturation in each collected panoramic image (i.e., percentage of pixels corresponding to saturated surfaces in each riparian area) to generate time series of surface saturation. Riparian surface saturation in all areas was seasonally variable, and its dynamics were in accordance with lower hillslope groundwater level fluctuations. Surface saturation in the different areas related to catchment outlet discharge through power law relationships. Differences in these relationships for different areas could be associated with the location of the areas along the stream network and to a possible influence of local riparian morphology on the development of surface saturation, suggesting a certain degree of intracatchment heterogeneity. This study paves the way for a subsequent investigation of the spatio-temporal variability of streamflow generation in the catchment, presented in our second contribution.</p
Reconciling spatial and temporal soil moisture effects on afternoon rainfall
Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks
Reconciling spatial and temporal soil moisture effects on afternoon rainfall
Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks
Recommended from our members
Persistent cloud cover over mega-cities linked to surface heat release
Urban areas are a hotspot for the interactions between the built environment, its inhabitants, and weather. Unlike the impact of temperatures through the well-known urban heat island effect, urban effects on cloud formation remain unknown. In this study we show observational evidence of a systematic enhancement of cloud cover in the afternoon and evening over two large metropolitan areas in Europe (Paris and London). Long-term measurements in and around London show that during late-spring and summer, even though less moisture is available at the surface and the atmosphere is drier, low clouds can persist longer over the urban area as vertical mixing of the available moisture is maintained for a longer period of time, into the evening transition. Our findings show that urban impacts on weather extend beyond temperature effects. These prolonged clouds over the city might enhance the urban heat island via night-time radiative forcing
Contribution of water-limited ecoregions to their own supply of rainfall
The occurrence of wet and dry growing seasons in water-limited regions remains poorly understood, partly due to the complex role that these regions play in the genesis of their own rainfall. This limits the predictability of global carbon and water budgets, and hinders the regional management of naturalresources. Using novel satellite observations and atmospheric trajectory modelling, we unravel the origin and immediate drivers of growing-season precipitation, and the extent to which ecoregions themselves contribute to their own supply of rainfall. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass anomalies—are caused by a complex interplay of land and ocean evaporation, air circulation and local atmospheric stability changes. For regions such as the Kalahari and Australia, the volumes of moisture recycling decline in dry years, providing a positive feedback that intensifies dry conditions. However, recycling ratios increase up to40%, pointing to the crucial role of these regions in generating their own supply of rainfall; transpiration in periods of water stress allows vegetation to partly offset the decrease in regional precipitation. Findings highlight the need to adequately represent vegetation–atmosphere feedbacks in models to predict biomass changes and to simulate the fate of water-limited regions in our warming climate
- …