8 research outputs found

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Group 4 Half-Sandwich Tris(trimethylsilylmethyl) Complexes: Thermal Decomposition and Reactivity with <i>N</i>,<i>N</i>‑Dimethylamine–Borane

    Get PDF
    The thermal decomposition of group 4 trimethylsilylmethyl derivatives [M­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>] (M = Ti (<b>1</b>), Zr (<b>2</b>), Hf (<b>3</b>)) in solution and their reactivity with <i>N</i>,<i>N</i>-dimethylamine–borane were investigated. Heating of hydrocarbon solutions of compounds <b>2</b> and <b>3</b> at 130–200 °C results in the elimination of SiMe<sub>4</sub> and the clean formation of the singular alkylidene–alkylidyne zirconium and hafnium compounds [{M­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>3</sub>{(μ-CH)<sub>3</sub>SiMe}­(μ<sub>3</sub>-CSiMe<sub>3</sub>)] (M = Zr (<b>4</b>), Hf (<b>5</b>)). The reaction of <b>2</b> and <b>3</b> with NHMe<sub>2</sub>BH<sub>3</sub> (≥1 equiv) at room temperature affords the dialkyl­(dimethylamidoborane) complexes [M­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(NMe<sub>2</sub>BH<sub>3</sub>)] (M = Zr (<b>6</b>), Hf (<b>7</b>)). Compounds <b>6</b> and <b>7</b> are unstable in solution and decompose with formation of the alkyl­(dimethylamino)­borane [B­(CH<sub>2</sub>SiMe<sub>3</sub>)­H­(NMe<sub>2</sub>)] (<b>8</b>), SiMe<sub>4</sub>, and other minor byproducts, including the tetranuclear zirconium­(III) octahydride complex [{Zr­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ-H)<sub>8</sub>] (<b>9</b>) in the decomposition of <b>6</b>. Addition of NHMe<sub>2</sub>BH<sub>3</sub> to the titanium tris­(trimethylsilylmethyl) derivative <b>1</b> gives the trinuclear mixed valence Ti­(II)/Ti­(III) tetrahydride complex [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-H)}<sub>3</sub>(μ<sub>3</sub>-H)­(μ<sub>3</sub>-NMe<sub>2</sub>BH<sub>2</sub>)] (<b>10</b>) at 45–65 °C. While the complete conversion of <b>1</b> under argon atmosphere requires excess NHMe<sub>2</sub>BH<sub>3</sub> (up to 15 equiv), complex <b>10</b> is readily prepared with 3 equiv of NHMe<sub>2</sub>BH<sub>3</sub> under a hydrogen atmosphere indicating that the formation of <b>10</b> involves hydrogenolysis of <b>1</b> in the presence of (NMe<sub>2</sub>BH<sub>2</sub>)<sub>2</sub>. In absence of amine–borane, the reaction of <b>1</b> with H<sub>2</sub> leads to the tetranuclear titanium­(III) octahydride [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ-H)<sub>8</sub>] (<b>11</b>), which upon addition of NHMe<sub>2</sub>BH<sub>3</sub> and subsequent heating at 65 °C affords complex <b>10</b>. The X-ray crystal structures of <b>2</b>, <b>4</b>, <b>5</b>, <b>10</b>, and <b>11</b> were determined

    Redox-Active Behavior of the [{Ti(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(μ-NH)}<sub>3</sub>(μ<sub>3</sub>‑N)] Metalloligand

    No full text
    Treatment of [Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] with [K­(C<sub>5</sub>Me<sub>5</sub>)] in toluene gives C<sub>10</sub>Me<sub>10</sub> and the paramagnetic [K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>3</b>) derivative. Crystallization of <b>3</b> in pyridine affords the potassium-free [Cl<sub>2</sub>(py)<sub>2</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>4</b>) complex. Whereas the reaction of <b>3</b> with 1 equiv of 18-crown-6 leads to the molecular complex [(18-crown-6)­K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>5</b>), the analogous treatment of <b>3</b> with cryptand-222 affords the ion pair [K­(crypt-222)]­[Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>6</b>). The X-ray crystal structures of <b>4</b>, <b>5</b>, and <b>6</b> have been determined. Density functional theory (DFT) calculations have elucidated the electronic structure of these species, which should be regarded as containing trivalent Y bonded to the {(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)} metalloligand radical anion

    Partial Hydrogenation of a Tetranuclear Titanium Nitrido Complex with Ammonia Borane

    No full text
    The treatment of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ<sub>3</sub>-N)<sub>4</sub>] with NH<sub>3</sub>BH<sub>3</sub> leads to the paramagnetic imidonitrido complex [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ<sub>3</sub>-N)<sub>3</sub>(μ<sub>3</sub>-NH)], which can also be obtained by stepwise proton and electron transfer with HOTf and [K­(C<sub>5</sub>Me<sub>5</sub>)]

    Redox-Active Behavior of the [{Ti(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(μ-NH)}<sub>3</sub>(μ<sub>3</sub>‑N)] Metalloligand

    No full text
    Treatment of [Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] with [K­(C<sub>5</sub>Me<sub>5</sub>)] in toluene gives C<sub>10</sub>Me<sub>10</sub> and the paramagnetic [K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>3</b>) derivative. Crystallization of <b>3</b> in pyridine affords the potassium-free [Cl<sub>2</sub>(py)<sub>2</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>4</b>) complex. Whereas the reaction of <b>3</b> with 1 equiv of 18-crown-6 leads to the molecular complex [(18-crown-6)­K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>5</b>), the analogous treatment of <b>3</b> with cryptand-222 affords the ion pair [K­(crypt-222)]­[Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>6</b>). The X-ray crystal structures of <b>4</b>, <b>5</b>, and <b>6</b> have been determined. Density functional theory (DFT) calculations have elucidated the electronic structure of these species, which should be regarded as containing trivalent Y bonded to the {(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)} metalloligand radical anion

    Synthesis, Optical Properties, and Regioselective Functionalization of 4a-Aza-10a-boraphenanthrene

    No full text
    4a-Aza-10a-boraphenanthrene has been synthesized in only four steps from commercially available materials with a remarkable overall yield of 62%. In contrast to other BN-isosteres of phenathrene, this isomer is weakly fluorescent, which has been explained by means of computational studies that found a low energy conical intersection for the nonradiative deactivation of the excited state. Moreover, a completely regioselective functionalization of 4a-aza-10a-boraphenanthrene at C-1 by reaction with activated electrophiles has been achieved
    corecore