

Inorganic Chemistry

Article

pubs.acs.org/IC

Group 4 Half-Sandwich Tris(trimethylsilylmethyl) Complexes: Thermal Decomposition and Reactivity with *N,N*-Dimethylamine—Borane

Maider Greño, Estefanía del Horno, Miguel Mena, Adrián Pérez-Redondo, Víctor Varela-Izquierdo, and Carlos Yélamos*

Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares-Madrid, Spain

Supporting Information

ABSTRACT: The thermal decomposition of group 4 trimethylsilylmethyl derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ $(M=Ti\ (1),\ Zr\ (2),\ Hf\ (3))$ in solution and their reactivity with N_iN_i -dimethylamine—borane were investigated. Heating of hydrocarbon solutions of compounds 2 and 3 at 130–200 °C results in the elimination of SiMe₄ and the clean formation of the singular alkylidene—alkylidyne zirconium and hafnium compounds $[\{M(\eta^5-C_5Me_5)\}_3\{(\mu-CH)_3SiMe\}(\mu_3-CSiMe_3)]$

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{Me} \\ \text{Me} \\ \text{Me} \\ \text{SiMe}_{4} \\ \text{Me}_{3} \\ \text{SiH}_{2} \\ \text{C} \\ \text{CH}_{2} \\ \text{SiMe}_{3} \\ \text{Me} \\ \text{Me}_{3} \\ \text{Me}_{5} \\ \text{Me}_{6} \\ \text{Me}_{5} \\ \text{Me}_{5} \\ \text{Me}_{6} \\$$

(M = Zr (4), Hf (5)). The reaction of 2 and 3 with NHMe₂BH₃ (\geq 1 equiv) at room temperature affords the dialkyl(dimethylamidoborane) complexes [M(η^5 -C₅Me₅)(CH₂SiMe₃)₂(NMe₂BH₃)] (M = Zr (6), Hf (7)). Compounds 6 and 7 are unstable in solution and decompose with formation of the alkyl(dimethylamino)borane [B(CH₂SiMe₃)H(NMe₂)] (8), SiMe₄, and other minor byproducts, including the tetranuclear zirconium(III) octahydride complex [{Zr(η^5 -C₅Me₅)}₄(μ -H)₈] (9) in the decomposition of 6. Addition of NHMe₂BH₃ to the titanium tris(trimethylsilylmethyl) derivative 1 gives the trinuclear mixed valence Ti(II)/Ti(III) tetrahydride complex [{Ti(η^5 -C₅Me₅)(μ -H)}₃(μ ₃-H)(μ ₃-NMe₂BH₂)] (10) at 45–65 °C. While the complete conversion of 1 under argon atmosphere requires excess NHMe₂BH₃ (up to 15 equiv), complex 10 is readily prepared with 3 equiv of NHMe₂BH₃ under a hydrogen atmosphere indicating that the formation of 10 involves hydrogenolysis of 1 in the presence of (NMe₂BH₂)₂. In absence of amine—borane, the reaction of 1 with H₂ leads to the tetranuclear titanium(III) octahydride [{Ti(η^5 -C₅Me₅)}₄(μ -H)₈] (11), which upon addition of NHMe₂BH₃ and subsequent heating at 65 °C affords complex 10. The X-ray crystal structures of 2, 4, 5, 10, and 11 were determined.

■ INTRODUCTION

The chemistry of amine-boranes and related base-stabilized borane adducts has seen a rapid resurgence over the past decade. 1-4 The major interest for this intense research arises from the potential application of these systems for chemical hydrogen storage and subsequent H2 release in a controlled manner. A wide variety of metal complexes from across the whole periodic table has shown to catalyze amine-borane dehydrogenation, and nowadays it is recognized that those transformations are very complicated processes with variable mechanisms depending on the metal center and supporting ligands. In particular, group 4 derivatives have been intensively investigated as highly active homogeneous amine-borane dehydrogenation catalysts. Most of these studies have been performed with metallocene-type sandwich complexes $[M(\eta^5 (C_5R_5)_2X_n$ with the group 4 metal centers in the +2, +3, and +4 oxidation state, 5-14 but homoleptic amido compounds [M- $(NMe_2)_4$ $(M = Ti, Zr)^{14}$ and other zirconium nonmetallocene derivatives were also active toward secondary and primary amine-boranes. 15,16 To isolate key intermediates and to gain mechanistic insight into the catalytic dehydrogenation of amine-boranes several research groups have studied the stoichiometric version of these reactions. In s-block and early

transition-metal systems, the first stage of the reaction appears to involve the formation of amidoborane complexes via N–H bond activation. The amidoborane NR₂BH₃ ligands bound to the metal centers exhibit M–N and M···H–B interactions, and subsequent hydride transfer from boron to the metal results in aminoboranes (NR₂BH₂)_n and metal hydride species. Consequentially, a potential application of amine—boranes in coordination chemistry is the generation of reactive metal hydride complexes.

Transition-metal hydride compounds are receiving increasing attention in the context of the activation and functionalization of dinitrogen under mild conditions. ^{21–24} In particular, Hou and co-workers have reported fascinating examples of dinitrogen cleavage and partial hydrogenation by tri- and tetranuclear titanium polyhydride complexes generated by hydrogenolysis of half-sandwich trialkyl derivatives $[\text{Ti}(\eta^5-\text{C}_5\text{Me}_4\text{SiMe}_3)(\text{CH}_2\text{SiMe}_3)_3].^{21,25,26}$ More recently, we have described the cleavage of dinitrogen under ambient conditions by simple exposure of $[\text{Ti}(\eta^5-\text{C}_5\text{Me}_5)\text{Me}_3]$ to commercially available and inexpensive forming gas $(\text{H}_2/\text{N}_2 \text{ mixture}, 13.5-$

Received: June 23, 2017 Published: August 29, 2017

16.5% of H_2).²⁷ As part of a project devoted to the development of reactive group 4 hydride complexes, we became interested in the study of the reactivity of amine—borane adducts with half-sandwich derivatives $[M(\eta^5-C_5Me_5)-R_3]$. Thus, our group recently reported several mono-, di-, and trinuclear zirconium hydride species by treatment of amido complexes $[Zr(\eta^5-C_5Me_5)(NMe_2)_nCl_{3-n}]$ with NHR_2BH_3 ($R_2 = Me_2$, HtBu).²⁸ Herein we describe the results obtained in the reaction of tris(trimethylsilylmethyl) derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ with N_iN_i -dimethylamine—borane. Previously, we decided to evaluate the thermal stability of the half-sandwich trialkyl complexes in solution as a preliminary step in the study of their reactivity.

EXPERIMENTAL SECTION

General Considerations. All manipulations were performed under argon atmosphere using Schlenk line or glovebox techniques. Toluene, hexane, and pentane were distilled from Na/K alloy just before use. Fluorobenzene was distilled from calcium hydride just prior to use. NMR solvents were dried with Na/K alloy (C_6D_6) or calcium hydride (CDCl₃) and vacuum-distilled. Oven-dried glassware was repeatedly evacuated with a pumping system (ca. 1 × 10⁻³ torr) and subsequently filled with inert gas. Thermolyses in solution at high temperatures were performed by heating flame-sealed NMR or Carius tubes in a Roth autoclave model III. N,N-Dimethylamine—borane (NHMe₂BH₃) was purchased from Aldrich and used as received. Hydrogen (≥99.9999%, H₂O < 0.5 ppm, O₂ < 0.1 ppm) was purchased from Air Liquide and used as received. [M(η ⁵-C₅Me₅)Cl₃] (M = Zr, Hf),²⁹ [Li(CH₂SiMe₃)],³⁰ and [Ti(η ⁵-C₅Me₅)(CH₂SiMe₃)₃] (1)³¹ were prepared according to published procedures.

Samples for infrared spectroscopy were prepared as KBr pellets, and the spectra were obtained using an FT-IR PerkinElmer SPECTRUM 2000 or FT-IR PerkinElmer FRONTIER spectrophotometer. ¹H and ¹³C{¹H} NMR spectra were recorded on a Varian Mercury-300 or Unity-500 spectrometers. ¹¹B and ¹H-²⁹Si HMBC NMR spectra were obtained using a Bruker AV400 spectrometer. ¹H{¹¹B} NMR spectra were recorded on a Bruker AV300 Avance spectrometer. Chemical shifts (δ , ppm) in the ¹H and ¹³C{¹H} NMR spectra are given relative to residual protons or to carbon of the solvent. Chemical shifts (δ , ppm) in the ²⁹Si and ¹¹B NMR spectra are given relative to SiMe₄ and BF₃·OEt₂ as external references. Gas chromatography-mass spectrometry (GC-MS) data were obtained on an Agilent GC-MS turbo system (model 5975-7820A) equipped with an HP-5MS capillary column (30 m \times 0.25 mm \times 0.25 μ m) under the following conditions: injector temperature 230 °C, detector temperature 250 °C, 50 °C ramp at 2.5 °C min $^{-1}$ until 75 °C. The effective magnetic moments were determined by the Evans NMR method at 293 K (using a 300 MHz instrument with a field strength of 7.05 T). 32-34 Microanalyses (C, H, N) were performed in a PerkinElmer CHNS/O 2400 or Leco CHNS-932 microanalyzers.

Synthesis of [Zr(η^5 -C₅Me₅)(CH₂SiMe₃)₃] (2). A 100 mL Schlenk tube was charged with [Zr(η^5 -C₅Me₅)Cl₃] (1.00 g, 3.00 mmol), [Li(CH₂SiMe₃)] (0.86 g, 9.13 mmol), and hexane (40 mL). The reaction mixture was stirred at room temperature for 20 h to give a gray solid and a colorless solution. After filtration, the volatile components of the solution were removed under reduced pressure to afford **2** as a white solid (1.21 g, 83%). IR (KBr, cm⁻¹): $\tilde{\nu}$ 2951 (vs), 2912 (s), 2893 (s), 2802 (w), 2744 (w), 1496 (w), 1433 (m), 1379 (m), 1292 (w), 1253 (s), 1242 (vs), 1099 (w), 1025 (w), 892 (vs), 847 (vs), 821 (vs), 745 (vs), 724 (s), 706 (vs), 677 (s), 609 (w), 473 (m). ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 1.84 (s, 15H; C₅Me₅), 0.34 (s, 6H; CH₂SiMe₃), 0.25 (s, 27H; CH₂SiMe₃). 13 C{¹H} NMR (125 MHz, C₆D₆, 20 °C): δ 119.4 (C₅Me₅), 63.8 (CH₂SiMe₃), 12.0 (C₅Me₅), 3.2 (CH₂SiMe₃). Anal. Calcd (%) for C₂₂H₄₈Si₃Zr (M_w = 488.10): C 54.14, H 9.91. Found: C 54.12, H 9.60.

Synthesis of [Hf(η^5 -C₅Me₅)(CH₂SiMe₃)₃] (3). In a fashion similar to the preparation of 2, the treatment of [Hf(η^5 -C₅Me₅)Cl₃] (1.00 g, 2.38 mmol) with [Li(CH₂SiMe₃)] (0.68 g, 7.22 mmol) in hexane (40

mL) gave 3 as a white solid (1.09 g, 80%). IR (KBr, cm⁻¹): $\tilde{\nu}$ 2950 (vs), 2913 (vs), 2865 (s), 2811 (w), 2731 (w), 1496 (w), 1437 (m), 1379 (m), 1291 (w), 1256 (s), 1244 (vs), 1100 (w), 1026 (w), 905 (vs), 850 (vs), 823 (vs), 781 (vs), 744 (s), 710 (s), 681 (s), 475 (m).

¹H NMR (500 MHz, C_6D_6 , 20 °C): δ 1.87 (s, 15H; C_5Me_5), 0.24 (s, 27H; CH₂SiMe₃), -0.12 (s, 6H; CH₂SiMe₃).

¹³C{¹H} NMR (125 MHz, C_6D_6 , 20 °C): δ 118.8 (C_5Me_5), 70.4 (CH₂SiMe₃), 11.7 (C_5Me_5), 3.5 (CH₂SiMe₃). Anal. Calcd (%) for $C_{22}H_{48}$ HfSi₃ (M_w = 575.37): C 45.93, H 8.41. Found: C 45.99, H 8.09.

Synthesis of $[{Zr(\eta^5-C_5Me_5)}_3{(\mu-CH)}_3SiMe}(\mu_3-CSiMe_3)]$ (4). A 100 mL Carius tube was charged with 2 (0.60 g, 1.23 mmol) and hexane (3 mL). The tube was flame-sealed, and the resultant colorless solution was heated at 140 °C for 5 d. After it cooled at room temperature a brown crystalline solid and a light brown solution were obtained. The tube was opened in the glovebox, and the solid was isolated by filtration onto a glass frit and vacuum-dried to afford 4 as light brown crystals (0.20 g, 57%). IR (KBr, cm⁻¹): $\tilde{\nu}$ 2942 (vs), 2908 (vs), 2860 (vs), 2723 (w), 1497 (w), 1440 (s), 1376 (s), 1247 (m), 1229 (m), 1022 (m), 875 (s), 864 (s), 817 (s), 766 (m), 742 (m), 639 (s), 626 (s), 588 (m), 521 (m), 507 (s). ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 6.42 (s, 3H; (μ -CH)₃SiMe), 2.12 (s, 45H; C₅Me₅), 0.03 (s, 3H; $(\mu$ -CH)₃SiMe), -0.23 (s, 9H; μ ₃-CSiMe₃). ¹³C{¹H} NMR (125 MHz, C₆D₆, 20 °C): δ 384.2 (μ_3 -CSiMe₃), 203.4 ((μ -CH)₃SiMe), 115.6 (C_5 Me₅), 11.6 (C_5 Me₅), 9.2 (μ_3 -CSiMe₃), -16.1 ((μ -CH)₃SiMe). ²⁹Si (¹H–²⁹Si HMBC) NMR (79.5 MHz, C_6 D₆, 20 °C): δ –50.2 (μ_3 -CSiMe₃), –110.7 ((μ -CH)₃SiMe). Anal. Calcd (%) for $C_{38}H_{60}Si_2Zr_3$ ($M_w = 846.74$): C 53.90, H 7.14. Found: C 53.85, H

Synthesis of $[{Hf(\eta^5-C_5Me_5)}_3{(\mu-CH)}_3SiMe}(\mu_3-CSiMe_3)]$ (5). In a fashion similar to the preparation of 4, a Carius tube with a solution of 3 (0.60 g, 1.04 mmol) in hexane (4 mL) was heated at 180 °C for 7 d to give a light brown solution. The tube was cooled to -30 °C for 3 d to give brown crystals of 5 (0.085 g, 22%), which were isolated by filtration in the glovebox. IR (KBr, cm $^{-1}$): $\tilde{\nu}$ 2942 (vs), 2906 (vs), 2858 (vs), 2724 (w), 1485 (w), 1435 (m), 1376 (s), 1244 (m), 1229 (s), 1025 (m), 881 (s), 855 (s), 826 (vs), 816 (vs), 792 (s), 742 (s), 648 (vs), 636 (s), 616 (s), 591 (m), 526 (m). ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 5.34 (s, 3H; (μ -CH)₃SiMe), 2.14 (s, 45H; C₅Me₅), 0.18 (s, 3H; $(\mu$ -CH)₃SiMe), -0.20 (s, 9H; μ ₃-CSiMe₃). ¹³C{¹H} NMR (125) MHz, C₆D₆, 20 °C): δ 379.4 (μ_3 -CSiMe₃), 196.4 ((μ -CH)₃SiMe), 115.8 $(C_5\text{Me}_5)$, 11.6 $(C_5\text{Me}_5)$, 10.2 $(\mu_3\text{-CSiMe}_3)$, -18.9 $((\mu_5\text{-Me}_5)$ CH)₃SiMe). ²⁹Si (1 H $^{-29}$ Si HMBC) NMR (79.5 MHz, C₆D₆, 20 °C): δ –58.4 (μ_3 -CSiMe₃), –110.9 ((μ -CH)₃SiMe). Anal. Calcd (%) for $C_{38}H_{60}Hf_3Si_2$ ($M_w = 1108.54$): C 41.17, H 5.46. Found: C 41.24, H 4.82.

Synthesis of $[Zr(\eta^5-C_5Me_5)(CH_2SiMe_3)_2(NMe_2BH_3)]$ (6). Method A: A 100 mL Schlenk tube was charged with 2 (0.40 g, 0.82 mmol), NHMe₂BH₃ (0.14 g, 2.38 mmol), and toluene (30 mL). The reaction mixture was stirred at room temperature for 2 h to give a colorless solution. After filtration, the volatile components of the solution were removed under reduced pressure to afford 6 as a thick colorless oil (0.26 g, 68%). Method B: In a mortar, 2 (0.40 g, 0.82 mmol) and NHMe₂BH₃ (0.057 g, 0.97 mmol) were ground with a pestle for 15 min. The resultant colorless oil was dissolved in pentane (5 mL), and the solution was filtered to a Schlenk tube. The volatile components of the solution were removed under reduced pressure to afford 6 as a thick colorless oil (0.31 g, 82%). IR (KBr, cm $^{-1}$): $\tilde{\nu}$ 2912 (s), 2839 (m), 2791 (w), 2442 (m) (BH_{term}), 2100 (m) (BH_{bridging}), 1462 (m), 1380 (m), 1243 (vs), 1171 (m), 1045 (w), 1026 (w), 993 (s), 930 (m), 895 (s), 848 (vs), 824 (s), 734 (s), 709 (s), 678 (m), 513 (w), 440 (w), 416 (w). ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 2.31 (s, 6H; NMe_2BH_3), 1.83 (s, 15H; C_5Me_5), 0.32 (AX system, $^2J(H_1H) = 11.0$ Hz, 2H; CHHSiMe₃), 0.25 (s, 18H; CHHSiMe₃), -0.01 (AX system, $^{2}J(H,H) = 11.0 \text{ Hz}$, 2H; CHHSiMe₃), the NMe₂BH₃ resonance signal was not observed. 1H NMR (300 MHz, C_6D_6 , 24 $^{\circ}C$): δ 2.32 (s, 6H; NMe_2BH_3), 1.84 (s, 15H; C_5Me_5), 1.42 (q br, ${}^1J(H,B) = 91.5$ Hz, 3H; NMe_2BH_3), 0.33 (AX system, ${}^2J(H,H) = 11.1 Hz$, 2H; CHHSiMe₃), 0.25 (s, 18H; CHHSi Me_3), 0.00 (AX system, ${}^2J(H,H) = 11.1$ Hz, 2H; CHHSiMe₃). ${}^{1}H\{{}^{11}B\}$ NMR (300 MHz, C₆D₆, 24 ${}^{\circ}C$): δ 2.34 (s, 6H; NMe_2BH_3), 1.86 (s, 15H; C₅Me₅), 1.41 (s, 3H; NMe_2BH_3), 0.31 (AX

system, $^2J(H,H)=11.4$ Hz, 2H; CHHSiMe₃), 0.22 (s, 18H; CHHSi Me_3), -0.01 (AX system, $^2J(H,H)=11.4$ Hz, 2H; CHHSiMe₃). 13 C{ 1 H} NMR (125 MHz, C₆D₆, 20 °C): δ 120.2 (C₅Me₅), 54.7 (CH₂SiMe₃), 48.6 (NMe₂BH₃), 12.2 (C₅Me₅), 3.5 (CH₂SiMe₃). 11 B NMR (128 MHz, C₆D₆, 20 °C): δ -3.6 (q, $^{1}J(B,H)=90.8$ Hz; BH₃). Anal. Calcd (%) for C₂₀H₄₆BNSi₂Zr ($M_w=458.80$): C 52.36, H 10.11, N 3.05. Found: C 51.56, H 9.68, N 4.64. Satisfactory elemental analysis could not be obtained for this oily and unstable compound.

Synthesis of $[Hf(\eta^5-C_5Me_5)(CH_2SiMe_3)_2(NMe_2BH_3)]$ (7). In a fashion similar to the preparation of 6 (Method A), the treatment of 3 (0.40 g, 0.70 mmol) with NHMe₂BH₃ (0.13 g, 2.21 mmol) in toluene (30 mL) for 24 h afforded 7 as a thick colorless oil (0.29 g, 76%). IR (KBr, cm⁻¹): \tilde{v} 2947 (vs), 2914 (vs), 2880 (s), 2840 (m), 2791 (w), $2450 \ (m) \ (BH_{term}), \ 2104 \ (m) \ (BH_{bridging}), \ 1463 \ (m), \ 1380 \ (m), \ 1243$ (vs), 1172 (m), 1025 (w), 994 (s), 907 (s), 848 (vs), 820 (s), 781 (m), 735 (s), 711 (m), 678 (m), 518 (w), 441 (w), 415 (w). ¹H NMR (300 MHz, C₆D₆, 20 °C): δ 2.35 (s, 6H; NMe₂BH₃), 1.89 (s, 15H; C₅Me₅), 0.24 (s, 18H; CHHSiMe₃), -0.14 (AX system, ${}^{2}J(H,H) = 11.4$ Hz, 2H; CHHSiMe₃), -0.40 (AX system, ${}^{2}J(H,H) = 11.4$ Hz, 2H; CHHSiMe₃), the NMe₂BH₃ resonance signal was not observed. The $^{1}H\{^{11}B\}$ NMR (300 MHz, $C_{6}D_{6}$, 24 $^{\circ}C$) spectrum did not allow the assignment of the BH₃ resonance signal. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 20 °C): δ 119.1 (C_5Me_5), 56.4 (CH_2SiMe_3), 48.4 (NMe_2BH_3), 12.1 (C_5Me_5), 3.8 (CH_2SiMe_3). ¹¹B NMR (128 MHz, C_6D_6 , 20 °C): δ ${}^{1}J(B,H) = 91.3 \text{ Hz}; BH_{3}). \text{ Anal. Calcd (%) for}$ $C_{20}H_{46}BHfNSi_2$ ($M_w = 546.06$): C 43.99, H 8.49, N 2.57. Found: C 43.54, H 7.80, N 2.70. Satisfactory elemental analysis could not be obtained for this oily and unstable compound.

Thermal Decomposition of $[Zr(\eta^5-C_5Me_5)-(CH_2SiMe_3)_2(NMe_2BH_3)]$ (6) in an NMR Tube-Scale Experiment. A 5 mm valved NMR tube was charged with 6 (0.050 g, 0.11 mmol) and benzene- d_6 (0.60 mL). The resultant colorless solution was heated at 75 °C using a thermostat-controlled oil bath, and the composition of the solution was monitored by ¹H NMR spectroscopy. After 4 d, ¹H and ¹³C{¹H} NMR spectra showed complete consumption of 6 and revealed new resonances assigned to $[B(CH_2SiMe_3)H(NMe_2)]$ (8), $SiMe_4$, and $[\{Zr(\eta^5-C_5Me_5)\}_4(\mu-H)_8]$ (9). When it stood at room temperature for 24 h, dark green crystals of 9 were grown at the bottom of the NMR tube. The supernatant solution was decanted and, after dilution with an additional 1.40 mL of benzene- d_6 , analyzed by GC-MS to identify the molecular ion M⁺ for 8 with m/z of 143.1, whereas the base peak of the spectra corresponds to the $[\{M-Me\}]^+$ ion.

NMR and GC-MS Data for $[B(CH_2SiMe_3)H(NMe_2)]$ (8). ¹H NMR (500 MHz, C_6D_6 , 20 °C): δ 2.70 (s, 3H; NMeMe), 2.43 (s, 3H; NMeMe), 0.37 (d br., ³J(H,H) = 4.4 Hz, 2H; CH_2SiMe_3), 0.11 (s, 9H; CH_2SiMe_3), the BH resonance signal was not observed. ¹³ $C\{^1H\}$ NMR (125 MHz, C_6D_6 , 20 °C): δ 45.3 (NMeMe), 37.5 (NMeMe), 0.8 (CH_2SiMe_3), the BCH₂SiMe₃ resonance signal was not observed. ¹¹B NMR (128 MHz, C_6D_6 , 20 °C): δ 42.1 (d, ¹J(B,H) = 118.6 Hz; BH). GC-MS (retention time of 4.489 min): m/z 143.1 [M⁺], 128.0 [{M-Me}⁺].

NMR Data for $[\{Zr(\eta^5-C_5Me_5)\}_4(\mu-H)_8]^{35}$ (9). ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 2.31 (s, 60H; C₅Me₅), 0.77 (s, 8H; μ -H). ¹³C{¹H} NMR (125 MHz, C₆D₆, 20 °C): δ 117.4 (C₅Me₅), 12.7 (C₅Me₅).

Synthesis of [$\{Ti(\eta^5-C_5Me_5)(\mu-H)\}_3(\mu_3-H)(\mu_3-NMe_2BH_2)\}$] (10). *Method A:* A 100 mL ampule (Teflon stopcock) was charged with $[Ti(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ (1) (0.30 g, 0.67 mmol), NHMe₂BH₃ (0.25 g, 4.24 mmol), and toluene (25 mL). The reaction mixture was stirred at 45 °C for 24 h to give a brown solution. After addition of more NHMe₂BH₃ (0.33 g, 5.60 mmol) to this solution, the mixture was heated at 45 °C for 2 d. The volume of the resultant brown solution was reduced until ca. 4 mL under vacuum. After filtration, the solution was cooled to -35 °C for 7 d to give dark brown crystals of 10 (0.042 g, 32%). *Method B:* A 100 mL ampule (Teflon stopcock) was charged with 1 (0.30 g, 0.67 mmol), NHMe₂BH₃ (0.12 g, 2.04 mmol), and toluene (25 mL). After it cooled at -78 °C, the argon atmosphere was changed by dihydrogen, and the reaction mixture was stirred at 65 °C for 16 h. The volume of the resultant brown solution

was reduced until ca. 4 mL under vacuum. After filtration, the solution was cooled to -35 °C for 5 d to give dark brown crystals of **10** (0.051 g, 39%). IR (KBr, cm⁻¹): \tilde{v} 2969 (m), 2940 (m), 2901 (vs), 2857 (s), 2819 (m), 2773 (w), 2717 (w), 2037 (m) (BH_{bridging}), 1969 (w) (BH_{bridging}), 1486 (w), 1439 (m), 1373 (s), 1259 (w), 1197 (m), 1154 (m), 1101 (w), 1065 (w), 1021 (s), 970 (m), 793 (m), 582 (w), 546 (m), 420 (m). ¹H NMR (300 MHz, C₆D₆, 20 °C): δ 30.38 (s br., $\Delta\nu_{1/2}$ = 415 Hz, 15H; C₅Me₅), 6.32 (s br., $\Delta\nu_{1/2}$ = 25 Hz, 30H; C₅Me₅), the resonance signals for μ_n -H and μ_3 -NMe₂BH₂ ligands were not observed. Anal. Calcd (%) for C₃₂H₅₇BNTi₃ (M_w = 610.23): C 62.98, H 9.42, N 2.30. Found: C 62.65, H 8.94, N 2.39. The effective magnetic moment of **10** was determined to be 1.87 μ_B (based on a unit formula of C₃₂H₅₇BNTi₃) on a C₆D₆ solution.

formula of $C_{32}H_{57}BNTi_3$) on a C_6D_6 solution. **Synthesis of** [{Ti(η^5 -C₅Me₅)}₄(μ -H)₈] (11). A 150 mL ampule (Teflon stopcock) was charged with [Ti(η^5 -C₅Me₅)(CH₂SiMe₃)₃] (1) (1.00 g, 2.25 mmol) and hexane (20 mL). After it was cooled at -78 °C, the argon atmosphere was changed by hydrogen. The reaction mixture was allowed to warm to room temperature and was heated at 65 °C for 2 d to give a dark red solution and dark red crystals. The crystals were isolated by filtration onto a glass frit, washed with hexane (3 × 5 mL), and vacuum-dried to afford 11 (0.18 g, 44%). IR (KBr, cm⁻¹): $\tilde{\nu}$ 2903 (vs), 2855 (s), 2718 (w), 1584 (m), 1491 (w), 1451 (m), 1432 (m), 1372 (s), 1340 (m), 1182 (w), 1123 (w), 1066 (w), 1024 (m), 940 (w), 798 (m), 699 (w), 528 (w), 418 (w). ¹H NMR (500 MHz, C_6D_6 , 20 °C): δ 2.24 (s, 60H; C_5Me_5), -1.18 (s, 8H; μ -H). ¹³C{¹H} NMR (125 MHz, C_6D_6 , 20 °C): δ 117.8 (C_5Me_5), 13.6 (C_5Me_5). Anal. Calcd (%) for $C_{40}H_{68}Ti_4$ (M_w = 740.45): C 64.88, H 9.26. Found: C 64.41, H 9.29.

X-ray Structure Determination of 2, 4, 5, 10, and 11. Colorless crystals of 2 were grown from a hexane solution at -35 °C. Brown crystals of 4 were grown by cooling a fluorobenzene solution at -35 °C. Brown crystals of 5 were obtained by cooling to -30 °C a hexane solution as described above. Dark brown crystals of 10 were grown from a toluene solution at -35 °C. Dark red crystals of 11 were obtained by slow cooling at room temperature of a benzene- d_6 solution of the compound heated at 80 °C in a NMR tube. The crystals were removed from the Schlenks or NMR tube and covered with a layer of a viscous perfluoropolyether (FomblinY). A suitable crystal was selected with the aid of a microscope, mounted on a cryoloop, and immediately placed in the low-temperature nitrogen stream of the diffractometer. The intensity data sets were collected at 150 K on a Bruker-Nonius KappaCCD diffractometer equipped with an Oxford Cryostream 700 unit.

Crystallographic data for complexes are presented in Table S1 of the Supporting Information. The structures were solved, using the WINGX package, 36 by direct methods (2, 4, and 5), Patterson (10) (SHELXS-2013), 37 or intrinsic phasing methods (11) (SHELXT), 38 and refined by least-squares against F^2 (SHELXL-2014/7). 37 In the crystallographic study of 2, 4, and 5, all non-hydrogen atoms were anisotropically refined, whereas the hydrogen atoms were positioned geometrically and refined by using a riding model.

Crystals of 10 showed disorder for the carbon atoms C(11)-C(20) of the pentamethylcyclopentadienyl group linked to Ti(1). This disorder was treated conventionally by using the PART tool of the SHELXL program and allowing free refinement of the occupancy factor with the FVAR command. The final values of occupancy were 52.9 and 47.1%. All non-hydrogen atoms were anisotropically refined. The hydrogen atoms of the methyl groups were placed geometrically and refined by using a riding model. The rest of the hydrogen atoms (H(1), H(11), H(12), and H(112)) were located in the difference Fourier map and refined isotropically. Moreover the carbon atoms of the disordered pentamethylciclopentadienyl ligand were restrained with DELU and SIMU instructions.

Finally, all the non-hydrogen atoms were anisotropically refined in the structure determination for complex 11. The hydrogen atoms of the methyl groups were positioned geometrically and refined by using a riding model. Additionally, XHYDEX tool was employed to locate hydride groups bound to the titanium atoms. Thus, the hydrogen atoms H(12), H(13), H(14), H(23), H(24), H(34), and H(123) were found in the difference Fourier map and refined isotropically. H(124)

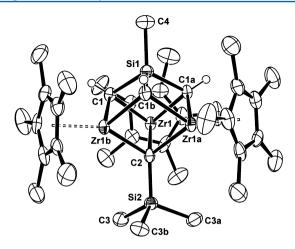
was also found in the difference Fourier map with the aid of XHYDEX, but unfortunately the coordinates and the isotropic displacement parameter for this hydrogen atom after the last refinement cycles were not appropriate. Therefore, the coordinates of H(124) were forced to be those found by XHYDEX tool, and refined isotropically. The highest peak found in the Fourier map of 1.82 e ${\rm \mathring{A}}^{-3}$ is located close to H(34) (1.93 Å).

■ RESULTS AND DISCUSSION

Synthesis and Thermal Decomposition of $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ Complexes. Treatment of the group 4 trichloride complexes $[M(\eta^5-C_3Me_5)Cl_3]$ with 3 equiv of trimethylsilylmethyllithium $[Li(CH_2SiMe_3)]$ in hexane at room temperature afforded the trialkyl derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ (M=Ti(1), Zr(2), Hf(3)) in 80-85% yields (Scheme 1). While the synthesis and appropriated

Scheme 1. Synthesis and Thermal Decomposition of 2 and 3

$$CI = \frac{3 \text{ [Li(CH}_2\text{SiMe}_3)]}{-3 \text{ LiCl}} = \frac{3 \text{ [Li(CH}_2\text{SiMe}_3)]}{\text{Me}_3\text{SiH}_2\text{C}} = \frac{130\text{-}200 \text{ °C}}{\text{Me}_3\text{SiH}_2\text{C}} = \frac{130\text{-}200 \text{ °C}}{-7/3 \text{ SiMe}_4} = \frac{1}{1/3} = \frac{130\text{-}200 \text{ °C}}{\text{Me}_3\text{SiMe}_4} = \frac{1}{1/3} = \frac{1}{1$$


characterization of the titanium complex 1 have been previously reported, ³¹ the zirconium and hafnium analogues 2 and 3 are poorly described in the literature. ^{35,39} Trimethylsilylmethyl derivatives 2 and 3 were isolated from the crude reactions as white solids in a pure form according to analytical and spectroscopic techniques. The high solubility of complexes 1–3 in hexane leads to lower yields of crystallized samples of the compounds. The X-ray crystal structure of the zirconium derivative 2 reveals the classical three-legged piano-stool geometry for group 4 half-sandwich complexes (Figure S1 in the Supporting Information).

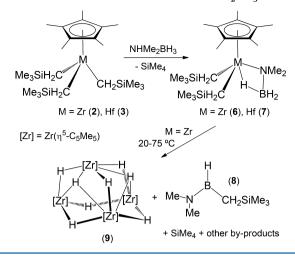
The thermal stability of the trialkyl group 4 derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ in benzene- d_6 solutions was monitored by 1H NMR spectroscopy. The spectra revealed that the titanium complex 1 decomposed slowly at temperatures higher than 45 ${}^{\circ}C$ to give SiMe₄ and some unidentified species in solution. In contrast, the zirconium analogue 2 is stable up to 110 ${}^{\circ}C$, and at higher temperatures the spectra showed the clean formation of SiMe₄ and the alkylidenealkylidyne complex $[\{Zr(\eta^5-C_5Me_5)\}_3\{(\mu\text{-CH})_3SiMe\}(\mu_3\text{-CSiMe}_3)]$ (4) (Scheme 1). Likewise, the hafnium compound 3 decomposed in solution at temperatures higher than 130 ${}^{\circ}C$ to give SiMe₄ and complex $[\{Hf(\eta^5-C_5Me_5)\}_3\{(\mu\text{-CH})_3SiMe\}(\mu_3\text{-CSiMe}_3)]$ (5). No intermediates or secondary products were detected by NMR spectroscopy in the formation of complexes 4 and 5 at temperatures between 130 and 200 ${}^{\circ}C$.

Despite several attempts, we were not able to isolate any pure compound in the thermal decomposition of the titanium derivative $[\mathrm{Ti}(\eta^5\text{-}\mathrm{C_5Me_5})(\mathrm{CH_2SiMe_3})_3]$ in hydrocarbon solvents. However, complexes 4 and 5 are readily obtained by thermal treatment of toluene or hexane solutions of the trialkyl precursors 2 and 3 at 130–200 °C. While the compounds can be isolated in good yields as brown solids by simple removing of the volatile components of the reaction mixtures, crystalline samples of complexes 4 and 5 for analytical and spectroscopic techniques were obtained from cooled hexane solutions in 57 and 22% yields, respectively.

Complexes 4 and 5 exhibit a high solubility in hydrocarbon solvents and are extremely air-sensitive both in the solid state and in solution. The ¹H and ¹³C{¹H} NMR spectra in benzene d_6 show resonance signals for three equivalent η^5 -C₅Me₅ ligands and are consistent with C_{3v} symmetry in solution. In addition, the spectra reveal resonances for one $(\mu\text{-CH})_3$ SiMe ligand per trinuclear unit. The μ -CH alkylidene groups of these ligands appear as singlets at $\delta = 6.42$ and 5.34 in the ¹H NMR spectra of 4 and 5, and the ¹³C{¹H} NMR signals of these moieties occurs at δ = 203.4 and 196.4, respectively. Similar downfield resonances have been reported for other zirconium and hafnium complexes with μ -CHR alkylidene ligands. ^{40,41} The alkylidyne carbon resonances of the μ_3 -CSiMe₃ ligands appear at $\delta = 384.2$ and 379.4 in the ${}^{13}C\{{}^{1}H\}$ NMR spectra of compounds 4 and 5, respectively. Zirconium and hafnium complexes with μ_3 -alkylidyne ligands remain rare in the literature, and the reported examples have been obtained by fortuitous syntheses. 42,43 Nevertheless, our group has reported a number of titanium derivatives with μ_3 -alkylidyne groups that show analogous downfield resonance signals such as [{Ti(η^5 -C₅Me₅)}₄(μ_3 -CH)₄] (δ_C = 490.8), ⁴⁴ [{Ti(η^5 -C₅Me₅)(μ -O)}₃(μ_3 -CR)] (R = H, ⁴⁵ Me⁴⁶) (δ_C = 383.8 and 401.7, respectively), and $[\{Ti(\eta^5-C_5Me_5)\}_4(\mu_3-CH)_2(\mu_3-N)_2]$ ($\delta_C =$ 393.7).²⁷ Finally, the ²⁹Si NMR spectra of compounds 4 and 5 reveal two resonance signals, which can be assigned by HMBC $^{1}\text{H}-^{29}\text{Si}$ NMR experiments. Thus, the upfield signals at $\delta=$ -110.7 and -110.9 correspond to the $(\mu$ -CH)₃SiMe ligands, whereas those at $\delta = -50.2$ and -58.4 are due to the μ_3 -CSiMe₃ moieties.

Single crystals of complexes 4 and 5 for X-ray diffraction studies were obtained from fluorobenzene or hexane solutions, respectively. The molecular structure of the zirconium complex 4 is presented in Figure 1, while selected lengths and angles for both compounds are given in Table 1. The crystal structures show a C_3 axis that crosses the C(4), Si(1), C(2), and Si(2) atoms. The complexes contain distorted $[C_4M_3Si]$ (M = Zr, Hf) cube-type cores with angles within the cube in the range of $84.5(2)-102.9(2)^{\circ}$. The group 4 atoms form equilateral triangles with Zr...Zr and Hf...Hf separations of 3.251(1) and 3.207(1) Å, respectively. One face of the triangle is capped by a μ_3 -CSiMe₃ alkylidyne group, while the other face contains a (μ -CH)₃SiMe tridentate ligand. Thus, the zirconium and hafnium atoms exhibit three-legged piano-stool arrangements, where two legs are carbon atoms of the μ -alkylidene ligand, and the third is the carbon atom C(2) of the μ_3 -CSiMe₃ alkylidyne group. The M(1)-C(1) (2.181(5) Å for 4 and 2.166(7) Å for 5) and M(1)-C(2) (2.212(4) Å for 4 and 2.202(6) Å for 5) bond lengths are similar to the metal—carbon distances found in related complexes with μ -CHR ligands. ^{40,41,47–49} The Si(1)— C(1) bond lengths of 1.935(5) and 1.916(7) Å in complexes 4 and 5 are longer than the remaining silicon—carbon distances of the molecules, which are in the range of 1.822(11)-1.878(9) Å.

Figure 1. Perspective view of **4** with thermal ellipsoids at the 50% probability level. Hydrogen atoms of the methyl groups are omitted for clarity. Symmetry code: (a) 1 - y, x - y, z; (b) 1 - x + y, 1 - x, z.


Table 1. Selected Lengths (Å) and Angles (deg) for 4 and 5

	M = Zr (4)	M = Hf(5)
M(1)-C(1)	2.181(5)	2.166(7)
M(1)-C(2)	2.212(4)	2.202(6)
C(1)-Si(1)	1.935(5)	1.916(7)
C(2)-Si(2)	1.836(9)	1.822(11)
C(3)-Si(2)	1.877(6)	1.873(7)
C(4)-Si(1)	1.878(9)	1.852(12)
$M(1)\cdots M(1)a^*$	3.251(1)	3.207(1)
M(1)···Si(1)	2.774(2)	2.761(2)
C(1)-M(1)-C(2)	84.5(2)	85.3(2)
C(1)-M(1)-C(1)a*	87.8(3)	87.3(3)
C(1)-Si(1)-C(1)a*	102.9(2)	102.4(3)
M(1)-C(1)-Si(1)	84.5(2)	84.9(3)
M(1)-C(1)-M(1)a*	96.3(2)	95.7(3)
M(1)-C(2)-M(1)a*	94.6(2)	93.4(3)
C(1)-Si(1)-C(4)	115.4(2)	115.8(2)
M(1)-C(2)-Si(2)	121.9(2)	122.8(2)
*Symmetry code: (a) $1 - y$, x	-y, z ; (b) $1-x+$	-y, 1-x, z.

This lengthening is most likely due to the structural rigidity associated with the coordination of the $(\mu\text{-CH})_3$ SiMe ligand to the three metal atoms in each molecule.

Reactivity of $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ Complexes with NHMe₂BH₃. Treatment of zirconium 2 and hafnium 3 complexes with NHMe₂BH₃ (≥1 equiv) in toluene at room temperature resulted in the elimination of 1 equiv of SiMe4 and the formation of the dialkyl(dimethylamidoborane) derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_2(NMe_2BH_3)]$ (M = Zr (6), Hf (7)) (Scheme 2). These compounds were isolated in 68–76% yields as thick colorless oils that slowly decompose in hydrocarbon solutions at room temperature (vide infra). Despite many attempts, no further substitution of trimethylsilylmethyl ligands in complexes 6 and 7 by dimethylamidoborane groups could be achieved, and the additional NHMe₂BH₃ in the reaction mixtures undergoes dehydrogenation to give (NMe₂BH₂)₂ and H₂. Noteworthy, the zirconium complex 6 was isolated in 82% yield by grinding in a mortar a solid mixture of 2 and NHMe₂BH₃ (1 equiv) with a pestle for 15 min. In contrast, the analogous mechanochemical treatment of the hafnium trialkyl complex 3 and N,N-dimethylamineborane gave the initial reagents unaltered.

Scheme 2. Reactions of 2 and 3 with NHMe₂BH₃

The IR (KBr) spectra of complexes 6 and 7 show one characteristic band at ~2445 cm⁻¹ for the terminal B-H bonds and one absorption at \sim 2100 cm⁻¹ for $\nu_{\rm BH}$ vibrations of bridging B-H bonds. These data suggest the existence of M... H-B interactions in the structure of these compounds as those found in other group 4 amidoborane complexes. 11,17-19 However, well-defined quartet resonances (6, $\delta = -3.6$, ${}^{1}J(B,H) = 90.8 \text{ Hz}; 7, \delta = -3.9, {}^{1}J(B,H) = 91.3 \text{ Hz}) \text{ observed}$ in the ¹¹B NMR spectra at room temperature of the complexes in benzene-d₆ could be indicative of monodentate NMe₂BH₃ ligands or a rapid interchange of bridging and terminal B-H bonds in solution. Indeed, ¹H and ¹³C{¹H} NMR spectra are consistent with C_s symmetry in the structure of complexes 6 and 7 in benzene- d_6 solution. Thus, the trimethylsilylmethyl ligands are equivalent with the CH2 moieties giving rise to AX spin systems (${}^{2}J(H,H) \approx 11 \text{ Hz}$) in the ${}^{1}H$ NMR spectra. The methyl groups of the NMe₂BH₃ ligand are also magnetically equivalent in the ¹H NMR spectra and appear as one sharp singlet at room temperature or at low temperatures according to the spectrum taken at -55 °C on a toluene- d_8 solution of complex 7 in a 400 MHz spectrometer. Resonance signals for the BH₃ groups of the NMe₂BH₃ ligands were difficult to locate in the ¹H NMR spectra of complexes 6 and 7 at room temperature. Nevertheless, the ¹H NMR spectrum of 6 at 24 °C showed a broad 1:1:1:1 quartet at $\delta = 1.42$ (${}^{1}J(H,B) = 91.5$ Hz), which was unambiguously assigned to the BH3 groups by a ¹H{¹¹B} NMR experiment. The instability of compounds 6 and 7 in solution hampered a study of the fluxional processes involving the BH3 groups of the NMe2BH3 ligands.

The thermal stability of complexes 6 and 7 in benzene- d_6 was monitored by NMR spectroscopy (Scheme 2). ¹H NMR spectra taken at room temperature and different reaction intervals showed resonances for several new species in solution. After it was heated at 75 °C for 4 d the initial colorless solutions turned to a dark color, and the ¹H NMR spectra showed complete consumption of the dialkyl-(dimethylamidoborane) group 4 precursors. The spectra revealed resonance signals for the alkyl(dimethylamino)borane compound [B(CH₂SiMe₃)H(NMe₂)] (8) and SiMe₄ as the major products along with multiple resonances for other minor byproducts. However, the ¹¹B NMR spectrum of these dark solutions showed only a doublet resonance at δ = 42.1 (^{1}J (B,H) = 118.6 Hz), which is consistent with the formation of 8 as a single boron-containing species. The 1 H and 13 C{ 1 H} NMR

spectra of 8 at room temperature reveal two sharp resonance signals for the magnetically inequivalent methyl groups of the NMe2 moiety, which is indicative of hindered rotation about the B-N bond. The methylene of the BCH₂SiMe₃ group appears as a broad doublet at $\delta = 0.37$ (${}^{3}I(H,H) = 4.4$ Hz) in the ¹H NMR spectrum, but the corresponding carbon resonance in the ¹³C{¹H} NMR spectrum was not observed due to coupling with 11B. The NMR data of 8 compares well with those reported by Hill and co-workers for the alkyl-(amino)borane compounds [B{CH(SiMe₃)₂}H(NMe₂)] and $[B\{CH(SiMe_3)_2\}H\{N(CH_2)_4\}]$ characterized in the thermal decomposition of group 2 mixed alkyl(dimethylamidoborane) complexes. 50,51 Compound 8 is stable in benzene- d_6 solution under argon atmosphere, but, in a fashion similar to the behavior observed in those previous studies, we were not able to isolate complex 8 in a pure form because of its decomposition under vacuum. Nevertheless, analysis by GC-MS of a dilute benzene- d_6 solution generated from the decomposition of 6 provided the molecular ion M⁺ for 8 with m/z of 143.1.

Hill has suggested a mechanism involving an initial β -hydride elimination in the amidoborane ligand, followed by insertion of the generated H₂B=NR₂ species into the M-C bond, and finally a β -H elimination to produce the alkyl(amino)borane compounds and presumably hydrides MH₂. ^{50,51} Most likely, the formation of 8 from group 4 complexes 6 and 7 occurs via an analogous mechanism. Indeed, resonance signals for the tetranuclear zirconium(III) octahydride compound [$\{Zr(\eta^5 C_5Me_5$) $_4(\mu-H)_8$ (9) were identified in the 1H and ^{13}C { 1H } NMR spectra of the dark green solution resulting in the decomposition of 6. Complex 9 has been structurally characterized by Hou and co-workers through treatment of 2 with H₂ (10 atm) at 80 °C, but the isolated yields of 9 are strongly influenced by the reaction conditions.³⁵ Whereas the presence of the zirconium hydride complex 9 among the multiple minor byproducts of the reaction was clearly observed by NMR spectroscopy, an analogous hafnium octahydride derivative could not be identified in the dark blue benzene-d₆ solution resulting from the decomposition of 7.

We also studied the treatment of the titanium complex $[Ti(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ (1) with *N,N*-dimethylamine—borane (Scheme 3). The reaction of 1 with NHMe₂BH₃ (4 equiv) in benzene- d_6 was monitored by ¹H NMR spectroscopy. After 24 h at room temperature, the spectrum showed complete consumption of NHMe₂BH₃ and revealed resonance signals

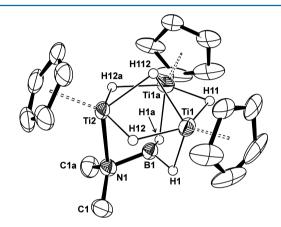
Scheme 3. Reactions of 1 with NHMe₂BH₃ and H₂

$$[Ti] = Ti(\eta^{5}-C_{5}Me_{5})$$

$$exc NHMe_{2}BH_{3}, 45 °C, 3 d$$

$$- SiMe_{4} - H_{2}$$

$$- (NMe_{2}BH_{2})_{2}$$


$$exc. H_{2}, 65 °C$$

$$- SiMe_{4} - SiMe_{4} - SiMe_{4}$$

$$- SiMe_{4} - SiMe_{4}$$

assignable to 1, the cyclic dimer (NMe₂BH₂)₂, and H₂. The ¹H NMR spectrum taken after 24 h at 45 °C displayed resonances for (NMe₂BH₂)₂, SiMe₄, compound 1, and two downfield and broad signals centered at δ = 30.38 and 6.32 in a 1:2 ratio. Only after addition of more NHMe₂BH₃ (4 equiv) to this solution, and subsequent heating at 45 °C for 24 h, the spectrum showed complete conversion of 1 along with an enhanced intensity of the broad resonances. In preparative scale experiments, the complete reaction of 1 required successive additions of NHMe₂BH₃ (up to 15 equiv) in toluene at 45 °C for 3 d. From the resulting brown solution at -35 °C, suitable crystals for an X-ray crystal-structure determination of the trinuclear titanium tetrahydride complex [{Ti(η ⁵-C₅Me₅)(μ -H)}₃(μ ₃-H)(μ ₃-NMe₂BH₂)] (10) were isolated in 32% yield.

The crystal structure of 10 is presented in Figure 2, while selected lengths and angles are given in Table 2. The molecular

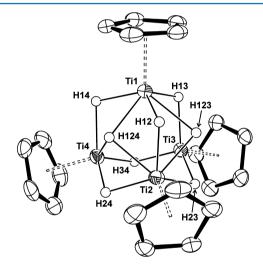
Figure 2. Perspective view of **10** with thermal ellipsoids at the 50% probability level. Methyl groups of the η^{5} -C₅Me₅ ligands and hydrogen atoms of the methyl moieties are omitted for clarity. Symmetry code: (a) x_{7} – y_{7} z_{7} .

structure of 10 presents a mirror plane bearing the Ti(2), N(1), B(1), H(11), and H(112) atoms. The central core shows three titanium atoms forming an isosceles triangle (Ti(1)-Ti(1)a 2.758(1) Å, Ti(1)-Ti(2) 2.804(1) Å), wherein each edge of the triangle is bridged by one μ -H hydride ligand (Ti(1)-H(11) 1.80(3) Å, Ti(1)-H(12) 1.82(3) Å, and Ti(2)-H(12) 1.82(3) Å). One face of the triangle is capped by a μ_3 -H hydride ligand (Ti(1)-H(112) 2.01(3) Å, and Ti(2)-H(112) 2.03(3) Å), whereas the other triangular face contains one μ_3 dimethylaminoborane group. The NMe₂BH₂ unit is bonded to titanium(2) by the amido nitrogen atom (Ti(2)-N(1)2.237(3) Å), while the BH₂ group binds to each titanium(1) atom through one $Ti \cdot \cdot \cdot H - B$ interaction $(Ti(1) - H(1) \ 1.98(3))$ Å). Those Ti-N and Ti-H(B) distances of 10 compare well with those determined in the titanium(III) amidoborane complexes $[\text{Ti}(\eta^5 - \text{C}_5\text{H}_5)_2(\text{NH}_2\text{BH}_3)]$ (2.153(3) and 1.95(3) Å, respectively)¹⁸ and $[\text{Ti}(\eta^5 - \text{C}_5\text{H}_5)_2(\text{NMe}_2\text{BH}_3)]$ (2.366(3) and 1.92(3) Å, respectively).¹¹ The B–N bond length of 1.503(5) Å in 10 is slightly shorter than those observed in the mentioned amidoborane complexes (1.534(5) and 1.586(4) Å, respectively) and rules out a significant B-N π -interaction. ⁵² Compound 10 represents a rare example, where unstable amino-boranes can be trapped within well-defined metal complexes. 52,53

Compound 10 exhibits a high solubility in toluene, benzene, and hexane resulting in low yields (\sim 30%) of crystallized

Table 2. Selected Lengths (Å) and Angles (deg) for 10

Ti(2)-N(1)	2.237(3)	B(1)-N(1)	1.503(5)
Ti(1)-H(12)	1.82(3)	Ti(1)-H(11)	1.80(3)
Ti(1)-H(112)	2.01(3)	Ti(1)-H(1)	1.98(3)
Ti(2)-H(12)	1.82(3)	Ti(2)-H(112)	2.03(3)
B(1)-H(1)	1.12(3)	Ti(1)-Ti(2)	2.804(1)
Ti(1)-Ti(1)a*	2.758(1)		
N(1)-Ti(2)-B(1)	37.8(1)	H(11)-Ti(1)-H(12)	140(2)
H(11)-Ti(1)-H(112)	73(1)	H(11)-Ti(1)-H(1)	86(2)
H(12)-Ti(1)-H(112)	76(1)	H(12)-Ti(1)-H(1)	82(2)
H(112)-Ti(1)-H(1)	113(1)	N(1)-Ti(2)-H(12)	84(1)
N(1)-Ti(2)-H(112)	121(1)	H(12)-Ti(2)-H(112)	76(1)
H(12)-Ti(2)-H(12)a*	138(1)	Ti(2)-N(1)-C(1)	118.2(2)
Ti(2)-N(1)-B(1)	76.5(2)	B(1)-N(1)-C(1)	115.5(2)
C(1)-N(1)-C(1)a*	109.7(3)	Ti(2)-B(1)-N(1)	65.8(2)
Ti(2)-B(1)-H(1)	119(2)	N(1)-B(1)-H(1)	114(2)
H(1)-B(1)-H(1)a*	116(2)		


^{*}Symmetry code: (a) x, -y, z.

samples, which were used for analytical and spectroscopic techniques. The ¹H NMR spectrum in benzene-d₆ at room temperature displays the two downfield and broad resonance signals in a 1:2 ratio described above at δ = 30.38 ($\Delta \nu_{1/2}$ = 415 Hz) and 6.32 ($\Delta \nu_{1/2}$ = 25 Hz) attributable to the η^5 -C₅Me₅ ligands in agreement with a C_s symmetry in solution. The paramagnetic nature of 10 was confirmed by an Evans method determination of its magnetic susceptibility ($\mu_{\text{eff}} = 1.87 \ \mu_{\text{B}}$, 293 K, C₆D₆ solution), which is consistent with the presence of an unpaired electron in the complex. Although resonance signals for the μ_n -hydride and μ_3 -NMe₂BH₂ ligands were not detected in the ¹H NMR spectrum of **10**, the IR spectrum (KBr) shows two absorptions at 2037 and 1969 cm⁻¹ for $\nu_{\rm BH}$ vibrations of bridging B-H bonds. Complex 10 is stable in benzene-d₆ solution under argon or dinitrogen atmosphere at 110 °C and does not react with tetrahydrofuran, pyridine, or triphenylphosphane at that temperature according to NMR experiments.

The unexpected formation of the mixed valence Ti(II)/ Ti(III) tetrahydride complex 10 was examined. Since we did not observe resonance signals for SiMe4 in the NMR tube experiment at room temperature, it appears that the titanium trialkyl complex $[Ti(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ (1) does not react with NHMe₂BH₃ via N-H activation in contrast to the zirconium and hafnium analogues 2 and 3. Instead, the experiment showed that the N,N-dimethylamine-borane reagent underwent dehydrogenation to give (NMe₂BH₂)₂ and molecular hydrogen,⁵⁴ which did not react with 1 at room temperature. We speculated that H₂ produces the hydrogenolysis of 1 at higher temperatures to give a $[Ti(\eta^5 -$ C₅Me₅)H₃] hydride species that subsequently could release hydrogen and capture one dimethylaminoborane unit to give 10. Indeed, dark brown crystals of compound 10 were isolated in slightly higher yield (39%) by treatment, under a hydrogen atmosphere, a toluene solution of 1 with only 3 equiv of NHMe₂BH₃ at 65 °C for 16 h (Scheme 3).

Furthermore, an NMR tube experiment showed that complex 1 in benzene- d_6 does not react with hydrogen (1 atm) at room temperature, but the heating of the reaction mixture at 45–65 °C leads to SiMe₄ and precipitation of dark red crystals at the bottom of the tube. In preparative scale experiments, exposure of a hexane solution of 1 to 1 atm of H₂ at 65 °C resulted in the precipitation of the tetranuclear titanium(III) octahydride compound [$\{\text{Ti}(\eta^5\text{-C}_5\text{Me}_5)\}_4(\mu\text{-H})_8\}$

(11) as dark red crystals in 44% yield. The crystal structure of 11 shows a Ti_4 tetrahedron, wherein each edge is bridged by one μ -H hydride ligand, and two faces are capped by one μ_3 -H hydride ligand (Figure 3 and Table S3 in the Supporting

Figure 3. Perspective view of **11** with thermal ellipsoids at the 50% probability level. Methyl groups of the $η^5$ -C₅Me₅ ligands are omitted for clarity. Selected lengths (Å): Ti(1)-Ti(2) 2.806(1), Ti(1)-Ti(3) 2.828(1), Ti(1)-Ti(4) 2.830(1), Ti(2)-Ti(3) 2.821(1), Ti(2)-Ti(4) 2.803(1), Ti(3)-Ti(4) 2.822(1), Ti-μ-H 1.70(5)-1.83(5), Ti-μ₃-H 1.90-2.13(5).

Information). The Ti–Ti separations fall in a narrow range (2.803(1)–2.830(1) Å, average 2.82(1) Å) and are slightly longer than those found in complex 10. The Ti– μ -H bond lengths range from 1.70(5) to 1.83(5) Å, whereas the Ti– μ ₃-H distances are longer (1.90–2.13(5) Å). The crystal structure of 11 is fully comparable to those reported by Hou and coworkers for complexes [{Ti(η ⁵-C₅Me₄SiMe₃)}₄(μ -H)₈],²⁵ and [{M(η ⁵-C₅Me₄R)}₄(μ -H)₈],³⁵ (M = Zr, Hf; R = SiMe₃, Me). Similarly to those examples, the short Ti–Ti distances and the diamagnetic nature in solution of 11 agree with the existence of metal–metal bonding as determined by density functional theory (DFT) calculations for the model compound [{Zr(η ⁵-C₅H₄SiH₃)}₄(μ -H)₈].³⁵

Compound 11 is poorly soluble in hydrocarbon solvents, pyridine, or tetrahydrofuran and reacts immediately with chloroform- d_1 . The 1H NMR spectrum of 11 in benzene- d_6 at room temperature displays two sharp singlets in a 60:8 ratio at $\delta=2.24$ and -1.18 for the η^5 -C $_5$ Me $_5$ and μ -H ligands, respectively. These data are consistent with a fluxional behavior of 11 in solution similar to those observed in the analogous group 4 octahydride complexes $[\{M(\eta^5\text{-C}_5\text{Me}_4\text{R})\}_4(\mu\text{-H})_8]^{.25,35}$ Interestingly, complex 11 in benzene- d_6 does not react with NHMe $_2$ BH $_3$ at room temperature, but its conversion to 10 was observed upon heating the reaction mixture at 65 °C. At that temperature, the 1H NMR spectra showed complete consumption of NHMe $_2$ BH $_3$ to give the dehydrogenation products H $_2$ and (NMe $_2$ BH $_2$) $_2$, which subsequently might react with 11 to give complex 10.

CONCLUSION

We have presented the clean formation of singular alkylidenealkylidyne complexes $[\{M(\eta^5-C_5Me_5)\}_3\{(\mu-CH)_3SiMe\}(\mu_3-\mu_5)\}_3$ CSiMe₃)] (M = Zr, Hf) by thermal decomposition of trimethylsilylmethyl derivatives $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ at 130-200 °C. The trialkyl zirconium and hafnium complexes $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ react with NHMe₂BH₃ at room temperature to give dialkyl(dimethylamidoborane) compounds $[M(\eta^5-C_5Me_5)(CH_2SiMe_3)_2(NMe_2BH_3)]$ via N-H activation. These sterically encumbered complexes were found to be unstable at room temperature and decompose with formation of the alkyl(dimethylamino)borane [B(CH₂SiMe₃)H(NMe₂)]. In contrast, NHMe₂BH₃ in presence of the titanium analogous $[Ti(\eta^5-C_5Me_5)(CH_2SiMe_3)_3]$ undergoes dehydrogenation to give H₂ and the cyclic dimer (NMe₂BH₂)₂, and this reaction mixture at 45–65 °C produces the hydride complex [{Ti(η^5 - $C_5Me_5(\mu-H)$ ₃ $(\mu_3-H)(\mu_3-NMe_2BH_2)$]. The formation of this trinuclear Ti(II)/Ti(III) cluster can be the result of the hydrogenation of the three alkyl groups of the titanium precursor to give a hydride species that subsequently releases H₂ and captures a dimethylaminoborane moiety. The trapped NMe₂BH₂ fragment within a trimetallic $[\{Ti(\eta^5-C_5Me_5)(\mu-1)\}]$ H) $_{3}(\mu_{3}$ -H)] system provides a novel bridging aminoborane bonding motif. The isolation of aminoborane complexes is relevant to dehydrogenation mechanisms of amine-boranes, where such compounds are often implicated as elusive intermediates.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.7b01607.

Experimental crystallographic data of complexes 2, 4, 5, 10, and 11; perspective view of the crystal structures of complexes 2 and 5; tables for selected lengths and angles of the crystal structures of 2 and 11; ^{1}H and $^{13}C\{^{1}H\}$ NMR spectra for complexes 6 and 7, and those taken after the decomposition of 6 in solution; GC-MS of $[B(CH_{2}SiMe_{3})H(NMe_{2})]$ (8) (PDF)

Accession Codes

CCDC 1556599-1556603 contain the supplementary crystal-lographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: carlos.yelamos@uah.es.

ORCID

Carlos Yélamos: 0000-0003-0425-4799

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Spanish MINECO (CTQ2013-44625-R) and Universidad de Alcalá (CCG2016/EXP-028) for financial support of this research. M.G. and E.H. thank the Universidad de Alcalá for fellowships.

REFERENCES

- (1) Rossin, A.; Peruzzini, M. Ammonia–Borane and Amine–Borane Dehydrogenation Mediated by Complex Metal Hydrides. *Chem. Rev.* **2016**, *116*, 8848–8872.
- (2) Johnson, H. C.; Hooper, T. N.; Weller, A. S. The Catalytic Dehydrocoupling of Amine–Boranes and Phosphine–Boranes. *Top. Organomet. Chem.* **2015**, *49*, 153–220.
- (3) Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammonia–Borane and Related Compounds as Dihydrogen Sources. *Chem. Rev.* **2010**, 110, 4079–4124.
- (4) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Amine— and Phosphine—Borane Adducts: New Interest in Old Molecules. *Chem. Rev.* **2010**, *110*, 4023–4078.
- (5) Clark, T. J.; Russell, C. A.; Manners, I. Homogeneous, Titanocene—Catalyzed Dehydrocoupling of Amine—Borane Adducts. *J. Am. Chem. Soc.* **2006**, *128*, 9582—9583.
- (6) Pun, D.; Lobkovsky, E.; Chirik, P. J. Amineborane Dehydrogenation Promoted by Isolable Zirconium Sandwich, Titanium Sandwich and N₂ Complexes. *Chem. Commun.* **2007**, 3297–3299.
- (7) Luo, Y.; Ohno, K. Computational Study of Titanocene-Catalyzed Dehydrocoupling of the Adduct Me₂NH·BH₃: An Intramolecular, Stepwise Mechanism. *Organometallics* **2007**, *26*, 3597–3600.
- (8) Sloan, M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-Jones, G. C.; Manners, I. Homogeneous Catalytic Dehydrocoupling/Dehydrogenation of Amine—Borane Adducts by Early Transition Metal, Group 4 Metallocene Complexes. J. Am. Chem. Soc. 2010, 132, 3831—3841.
- (9) Chapman, A. M.; Haddow, M. F.; Wass, D. F. Frustrated Lewis Pairs beyond the Main Group: Cationic Zirconocene—Phosphinoaryloxide Complexes and Their Application in Catalytic Dehydrogenation of Amine Boranes. *J. Am. Chem. Soc.* **2011**, *133*, 8826—8829.
- (10) Chapman, A. M.; Wass, D. F. Cationic Ti(IV) and Neutral Ti(III) Titanocene–Phosphinoaryloxide Frustrated Lewis Pairs: Hydrogen Activation and Catalytic Amine–Borane Dehydrogenation. *Dalton Trans.* **2012**, *41*, 9067–9072.
- (11) Helten, H.; Dutta, B.; Vance, J. R.; Sloan, M. E.; Haddow, M. F.; Sproules, S.; Collison, D.; Whittell, G. R.; Lloyd-Jones, G. C.; Manners, I. Paramagnetic Titanium(III) and Zirconium(III) Metallocene Complexes as Precatalysts for the Dehydrocoupling/Dehydrogenation of Amine—Boranes. *Angew. Chem., Int. Ed.* **2013**, *52*, 437—440
- (12) Klahn, M.; Hollmann, D.; Spannenberg, A.; Brückner, A.; Beweries, T. Titanocene(III) Complexes with 2-Phosphinoaryloxide Ligands for the Catalytic Dehydrogenation of Dimethylamine Borane. *Dalton Trans.* **2015**, *44*, 12103–12111.
- (13) Kalviri, H. A.; Gärtner, F.; Ye, G.; Korobkov, I.; Baker, R. T. Probing the Second Dehydrogenation Step in Ammonia—Borane Dehydrocoupling: Characterization and Reactivity of the Key

Intermediate, B-(Cyclotriborazanyl)amine-Borane. Chem. Sci. 2015, 6, 618-624.

- (14) Beweries, T.; Hansen, S.; Kessler, M.; Klahn, M.; Rosenthal, U. Catalytic Dehydrogenation of Dimethylamine Borane by Group 4 Metallocene Alkyne Complexes and Homoleptic Amido Compounds. *Dalton Trans.* **2011**, *40*, 7689–7692.
- (15) Erickson, K. A.; Stelmach, J. P. W.; Mucha, N. T.; Waterman, R. Zirconium—Catalyzed Amine Borane Dehydrocoupling and Transfer Hydrogenation. *Organometallics* **2015**, *34*, 4693–4699.
- (16) Lummis, P. A.; McDonald, R.; Ferguson, M. J.; Rivard, E. Synthesis, Characterization, and Dehydrocoupling Ability of Zirconium Complexes Bearing Hindered Bis(amido)silyl Ligands. *Dalton Trans.* **2015**, *44*, 7009–7020.
- (17) Forster, T. D.; Tuononen, H. M.; Parvez, M.; Roesler, R. Characterization of β -B-Agostic Isomers in Zirconocene Amidoborane Complexes. *J. Am. Chem. Soc.* **2009**, *131*, 6689–6691.
- (18) Wolstenholme, D. J.; Traboulsee, K. T.; Decken, A.; McGrady, G. S. Structure and Bonding of Titanocene Amidoborane Complexes: A Common Bonding Motif with Their β -Agostic Organometallic Counterparts. *Organometallics* **2010**, 29, 5769–5772.
- (19) Jacobs, E. A.; Fuller, A.; Coles, S. J.; Jones, G. A.; Tizzard, G. J.; Wright, J. A.; Lancaster, S. J. Synthesis and Structure of Amido— and Imido(pentafluorophenyl)borane Zirconocene and Hafnocene Complexes: N—H and B—H Activation. *Chem. Eur. J.* **2012**, *18*, 8647—8658.
- (20) For a recent review on s-block amidoborane complexes, see: Stennett, T. E.; Harder, S. s-Block Amidoboranes: Syntheses, Structures, Reactivity and Applications. *Chem. Soc. Rev.* **2016**, 45, 1112–1128.
- (21) Shima, T.; Hou, Z. Dinitrogen Fixation by Transition Metal Hydride Complexes. *Top. Organomet. Chem.* **2017**, *60*, 23–43.
- (22) Burford, R. J.; Yeo, A.; Fryzuk, M. D. Dinitrogen Activation by Group 4 and Group 5 Metal Complexes Supported by Phosphine—Amido Containing Ligand Manifolds. *Coord. Chem. Rev.* **2017**, 334, 84—99.
- (23) Jia, H.-P.; Quadrelli, E. A. Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. *Chem. Soc. Rev.* **2014**, *43*, 547–564.
- (24) Ballmann, J.; Munhá, R. F.; Fryzuk, M. D. The Hydride Route to the Preparation of Dinitrogen Complexes. *Chem. Commun.* **2010**, 46, 1013–1025.
- (25) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex. *Science* **2013**, *340*, 1549–1552.
- (26) Guru, M. M.; Shima, T.; Hou, Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. *Angew. Chem., Int. Ed.* **2016**, *55*, 12316–12320.
- (27) González-Moreiras, M.; Mena, M.; Pérez-Redondo, A.; Yélamos, C. Cleavage of Dinitrogen from Forming Gas by a Titanium Molecular System under Ambient Conditions. *Chem. Eur. J.* **2017**, 23, 3558–3561.
- (28) Greño, M.; Mena, M.; Pérez-Redondo, A.; Yélamos, C. Isolable Zirconium Hydride Species in the Reaction of Amido Complexes with Amine—Boranes. *Dalton Trans.* **2017**, *46*, 5138—5142.
- (29) Llinás, G. H.; Mena, M.; Palacios, F.; Royo, P.; Serrano, R. $(C_5Me_5)SiMe_3$ as a Mild and Effective Reagent for Transfer of the C_5Me_5 Ring: An Improved Route to Monopentamethylcyclopentadienyl Trihalides of the Group 4 Elements. *J. Organomet. Chem.* **1988**, 340, 37–40.
- (30) Tessier-Youngs, C.; Beachley, O. T., Jr.; et al. (Trimethylsilylmethyl)lithium. *Inorg. Synth.* **1986**, *24*, 95–97.
- (31) Mena, M.; Royo, P.; Serrano, R.; Pellinghelli, M. A.; Tiripicchio, A. Electron-Deficient (Pentamethylcyclopentadienyl)titanium Trialkyls: Evidence of Ti···H-C and Ti···C-C Interactions. Crystal and Molecular Structure of μ -[o-(CH₂)₂C₆H₄]{(η ⁵-C₅Me₅)Ti[o-(CH₂)₂C₆H₄]}. Organometallics 1989, 8, 476-482.

- (32) Evans, D. F. The Determination of the Paramagnetic Susceptibility of Substances in Solution by Nuclear Magnetic Resonance. *J. Chem. Soc.* **1959**, 2003–2005.
- (33) Sur, S. K. Measurement of Magnetic Susceptibility and Magnetic Moment of Paramagnetic Molecules in Solution by High-Field Fourier Transform NMR Spectroscopy. *J. Magn. Reson.* **1989**, *82*, 169–173.
- (34) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascals Constants. *J. Chem. Educ.* **2008**, *85*, 532–536.
- (35) Hu, S.; Shima, T.; Luo, Y.; Hou, Z. Tetranuclear Zirconium and Hafnium Polyhydride Complexes Composed of the "CpMH₂" Units. *Organometallics* **2013**, 32, 2145–2151.
- (36) Farrugia, L. J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854.
- (37) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
- (38) Sheldrick, G. M. SHELXT Integrated Space–Group and Crystal-Structure Determination. *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *71*, 3–8.
- (39) Oishi, M.; Kato, T.; Nakagawa, M.; Suzuki, H. Synthesis and Reactivity of Early—Late Heterobimetallic Hydrides of Group 4 Metals and Iridium Supported by $Mono(\eta^5-C_5Me_5)$ Ancillary Ligands: Bimetallic Carbon—Hydrogen Bond Activation. *Organometallics* **2008**, 27, 6046–6049.
- (40) Planalp, R. P.; Andersen, R. A.; Zalkin, A. Dialkyl Bis[bis(trimethylsilyl)amido] Group 4A Metal Complexes. Preparation of Bridging Carbene Complexes by γ Elimination of Alkane. Crystal Structure of {ZrCHSi(Me₂)NSiMe₃[N(SiMe₃)₂]}₂. Organometallics 1983, 2, 16–20.
- (41) Hessen, B.; van Bolhuis, F.; Teuben, J. H. Reaction of $C_5(CH_3)_5$ Hf(2,3-dimethyl-1,3-butadiene)Cl with Acetylene: Formation of an Asymmetric, Disubstituted 1,3-Dihafnacyclobutane. *Organometallics* **1987**, *6*, 1352–1353.
- (42) Herzog, A.; Roesky, H. W.; Jäger, F.; Steiner, A.; Noltemeyer, M. Reactions of $(\eta^5-C_5Me_5)ZrF_3$, $(\eta^5-C_5Me_4Et)ZrF_3$, $(\eta^5-C_5Me_5)ZrF_2$, $(\eta^5-C_5Me_5)HfF_3$, and $(\eta^5-C_5Me_5)TaF_4$ with AlMe3. Structure of the First Hafnium–Aluminum–Carbon Cluster. *Organometallics* **1996**, 15, 909–917.
- (43) Yue, N.; Hollink, E.; Guérin, F.; Stephan, D. W. Zirconium Phosphinimide Complexes: Synthesis, Structure, and Deactivation Pathways in Ethylene Polymerization Catalysis. *Organometallics* **2001**, 20, 4424–4433.
- (44) Andrés, R.; Gómez-Sal, P.; de Jesús, E.; Martín, A.; Mena, M.; Yélamos, C. Thermal Decomposition of $[(\eta^5 C_5 Me_5) TiMe_3]$: Synthesis and Structure of the Methylidyne Cubane $[\{(\eta^5 C_5 Me_5) Ti\}_4 (\mu_3 CH)_4]$. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 115–117.
- (45) Andrés, R.; Galakhov, M.; Martín, A.; Mena, M.; Santamaría, C. Organotitanium Oxides as Lewis Acidic Supports of Metal Carbonyl Species: $[\{Ti_3(\eta^5-C_5Me_5)_3(\mu-O)_3Me\}\{(\mu-OC)M(CO)_2(\eta^5-C_5H_5)\}_2]$ (M = Mo, W). J. Chem. Soc., Chem. Commun. 1995, 551–552.
- (46) Andrés, R.; Galakhov, M. V.; Martín, A.; Mena, M.; Santamaría, C. Synthesis and Characterization of New Polynuclear Titanium(IV) Oxo Alkyls: $[Cp*TiR(\mu-O)]_3$ and $[Cp*Ti(\mu-O)]_3$ ClR₂. Thermolysis of $[Cp*TiEt(\mu-O)]_3$ and the Crystal Structure of the First (μ_3 -Ethylidyne)titanium Complex, $[Cp*Ti(\mu-O)]_3(\mu_3$ -CMe). Organometallics 1994, 13, 2159–2163.
- (47) Schrock, R. R.; Liang, L.-C.; Baumann, R.; Davis, W. M. Synthesis of Group 4 $[(RN\text{-}o\text{-}C_6H_4)_2O]^{2-}$ Complexes where R is SiMe₃ or 0.5 Me₂SiCH₂CH₂SiMe₂. *J. Organomet. Chem.* **1999**, 591, 163–173.
- (48) Matsuo, T.; Kawaguchi, H. A Synthetic Cycle for H₂/CO Activation and Allene Synthesis Using Recyclable Zirconium Complexes. *J. Am. Chem. Soc.* **2005**, *127*, 17198–17199.
- (49) Kulinna, H.; Spaniol, T. P.; Maron, L.; Okuda, J. Cationic Zirconium Hydrides Supported by an NNNN-Type Macrocyclic Ligand: Synthesis, Structure, and Reactivity. *Inorg. Chem.* **2012**, *51*, 12462–12472.
- (50) Bellham, P.; Hill, M. S.; Liptrot, D. J.; MacDougall, D. J.; Mahon, M. F. Alkylstrontium Diamidoboranes: β -Hydride Elimination and Sr-C Insertion. *Chem. Commun.* **2011**, 47, 9060–9062.

(51) Bellham, P.; Hill, M. S.; Kociok-Köhn, G.; Liptrot, D. J. Alkaline Earth Alkyl Insertion Chemistry of *In Situ* Generated Aminoboranes. *Dalton Trans.* **2013**, 42, 737–745.

- (52) Kumar, A.; Beattie, N. A.; Pike, S. D.; Macgregor, S. A.; Weller, A. S. The Simplest Amino–Borane H₂B=NH₂ Trapped on a Rhodium Dimer: Pre-Catalysts for Amine–Borane Dehydropolymerization. *Angew. Chem., Int. Ed.* **2016**, *55*, 6651–6656.
- (53) Cui, P.; Spaniol, T. P.; Maron, L.; Okuda, J. Dehydrogenation of Amine–Borane Me₂NH·BH₃ Catalyzed by a Lanthanum–Hydride Complex. *Chem. Eur. J.* **2013**, *19*, 13437–13444.
- (54) The dehydrogenation of *N,N*-dimethylamine—borane must be occurring by a catalyzed process involving complex 1, because NHMe₂BH₃ is stable at room temperature in solution. There are many examples of metal-catalyzed amine—borane dehydrogenation at ambient temperature; see refs1–4.