80 research outputs found

    Floquet Fractional Chern Insulator in Doped Graphene

    Get PDF
    Fractional Chern insulators are theoretically predicted states of electronic matter with emergent topological order. They exhibit the same universal properties as the fractional quantum Hall effect, but dispose of the need to apply a strong magnetic field. However, despite intense theoretical work, an experimental realization for these exotic states of matter is still lacking. Here we show that doped graphene turns into a fractional Chern insulator, when irradiated with high-intensity circularly polarized light. We derive the effective steady state band structure of light-driven graphene using Floquet theory and subsequently study the interacting system with exact numerical diagonalization. The fractional Chern insulator state equivalent to the 1/3 Laughlin state appears at 7/12 total filling of the honeycomb lattice (1/6 filling of the upper band). The state also features spontaneous ferromagnetism and is thus an example of the spontaneous breaking of a continuous symmetry along with a topological phase transition.Comment: 10 page

    Tunable Casimir repulsion with three dimensional topological insulators

    Full text link
    In this Letter, we show that switching between repulsive and attractive Casimir forces by means of external tunable parameters could be realized with two topological insulator plates. We find two regimes where a repulsive (attractive) force is found at small (large) distances between the plates, canceling out at a critical distance. For a frequency range where the effective electromagnetic action is valid, this distance appears at length scales corresponding to 1ϵ(ω)(2/π)αθ1-\epsilon(\omega) (2/\pi)\alpha\theta.Comment: 9 pages, 5 figures, published version with auxiliary material. Featured in Physical Review Focu

    Tunable axial gauge fields in engineered Weyl semimetals: Semiclassical analysis and optical lattice implementations

    Full text link
    In this work, we describe a toolbox to realize and probe synthetic axial gauge fields in engineered Weyl semimetals. These synthetic electromagnetic fields, which are sensitive to the chirality associated with Weyl nodes, emerge due to spatially and temporally dependent shifts of the corresponding Weyl momenta. First, we introduce two realistic models, inspired by recent cold-atom developments, which are particularly suitable for the exploration of these synthetic axial gauge fields. Second, we describe how to realize and measure the effects of such axial fields through center-of-mass observables, based on semiclassical equations of motion and exact numerical simulations. In particular, we suggest realistic protocols to reveal an axial Hall response due to the axial electric field E5\mathbf{E}_5, and also, the axial cyclotron orbits and chiral pseudo-magnetic effect due to the axial magnetic field B5\mathbf{B}_5.Comment: 16 pages, 6 figures, published versio

    Fermionic dualities with axial gauge fields

    Full text link
    The dualities that map hard-to-solve, interacting theories to free, non-interacting ones often trigger a deeper understanding of the systems to which they apply. However, simplifying assumptions such as Lorentz invariance, low dimensionality, or the absence of axial gauge fields, limit their application to a broad class of systems, including topological semimetals. Here we derive several axial field theory dualities in 2+1 and 3+1 dimensions by developing an axial slave-rotor approach capable of accounting for the axial anomaly. Our 2+1-dimensional duality suggests the existence of a dual, critical surface theory for strained three-dimensional non-symmorphic topological insulators. Our 3+1-dimensional duality maps free Dirac fermions to Dirac fermions coupled to emergent U(1) and Kalb-Ramond vector and axial gauge fields. Upon fixing an axial field configuration that breaks Lorentz invariance, this duality maps free to interacting Weyl semimetals, thereby suggesting that the quantization of the non-linear circular photogalvanic effect can be robust to certain interactions. Our work emphasizes how axial and Lorentz-breaking dualities improve our understanding of topological matter.Comment: 11+3 pages, 3 figures, minor changes, accepted in Phys. Rev.

    Topological diffusive metal in amorphous transition metal mono-silicides

    Full text link
    In chiral crystals crystalline symmetries can protect multifold fermions, pseudo-relativistic masless quasiparticles that have no high-energy counterparts. Their realization in transition metal mono-silicides has exemplified their intriguing physical properties, such as long Fermi arc surface states and unusual optical responses. Recent experimental studies on amorphous transition metal mono-silicides suggest that topological properties may survive beyond crystals, even though theoretical evidence is lacking. Motivated by these findings, we theoretically study a tight-binding model of amorphous transition metal mono-silicides. We find that topological properties of multifold fermions survive in the presence of structural disorder that converts the semimetal into a diffusive metal. We characterize this topological diffusive metal phase with the spectral localizer, a real-space topological indicator that we show can signal multifold fermions. Our findings showcase how topological properties can survive in disordered metals, and how they can be uncovered using the spectral localizer.Comment: 7 + 9 pages; 4 + 9 figure

    Wavepacket dynamics on Chern band lattices in a trap

    Full text link
    The experimental realization of lattices with Chern bands in ultracold-atom and photonic systems has motivated the study of time-dependent phenomena, such as spatial propagation, in lattices with nontrivial topology. We study the dynamics of gaussian wavepackets on the Haldane honeycomb Chern-band lattice model, in the presence of a harmonic trap. We focus on the transverse response to a force, which is due partly to the Berry curvature and partly to the transverse component of the energy band curvature. We evaluate the accuracy of a semiclassical description, which treats the wavepacket as a point particle in both real and momentum space, in reproducing the motion of a realistic wavepacket with finite extent. We find that, in order to accurately capture the wavepacket dynamics, the extent of the wavepacket in momentum space needs to be taken into account. The dynamics is sensitive to the interplay of band dispersion and Berry curvature over the finite region of momentum (reciprocal) space where the wavepacket has support. Moreover, if the wavepacket is prepared with a finite initial momentum, the semiclassical analysis reproduces its motion as long as it has a large overlap with the eigenstates of a single band. The semiclassical description generally improves with increasing real-space size of the wavepacket, as long as the external conditions (e.g., external force) remain uniform throughout the spatial extent of the wavepacket.Comment: 11 pages, 8 figures, typos corrected, version published in Phys. Rev.

    Interaction driven phases in the half-filled honeycomb lattice: an infinite density matrix renormalization group study

    Full text link
    The emergence of the Haldane Chern insulator state due to strong short range repulsive interactions in the half-filled fermionic spinless honeycomb lattice model has been proposed and challenged with different methods and yet it still remains controversial. In this work we revisit the problem using the infinite density matrix renormalization group method and report numerical evidence supporting i) the absence of the Chern insulator state, ii) two previously unnoticed charge ordered phases and iii) the existence and stability of all the non-topological competing orders that were found previously within mean field. In addition, we discuss the nature of the corresponding phase transitions based on our numerical data. Our work establishes the phase diagram of the half-filled honeycomb lattice model tilting the balance towards the absence of a Chern insulator phase for this model.Comment: 12 pages, 8 figures, published versio
    corecore