31 research outputs found

    Enduring Medial Perforant Path Short-Term Synaptic Depression at High Pressure

    Get PDF
    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o) on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4–6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions

    Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    Get PDF
    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing

    High pressure and [Ca2+] produce an inverse modulation of synaptic input strength, network excitability and frequency response in the rat dentate gyrus

    Get PDF
    Hyperbaric environments induce the high pressure neurological syndrome (HPNS) characterized by hyperexcitability of the central nervous system and memory impairment. Human divers and other animals experience the HPNS at pressures beyond 1.1 MPa. High pressure depresses synaptic transmission and alters its dynamics in various animal models. Medial perforant path (MPP) synapses connecting the medial entorhinal cortex with the hippocampal formation are suppressed by 50% at 10.1MPa. Reduction of synaptic inputs is paradoxically associated with enhanced ability of dentate gyrus’ granule cells to generate spikes at high pressure. This mechanism allows MPP inputs to elicit standard granule cell outputs at 0.1 -25 Hz frequencies under hyperbaric conditions. An increased postsynaptic gain of MPP inputs probably allows diving animals to perform in hyperbaric environments, but makes them vulnerable to high intensity/frequency stimuli producing hyperexcitability. Increasing extracellular Ca2+ (Ca2+o) partially reverted pressure-mediated depression of MPP inputs and increased MPP’s low-pass filter properties. We postulated that raising Ca2+o in addition to increase synaptic inputs may reduce network excitability in the dentate gyrus potentially improving its function and reducing sensitivity to high intensity and pathologic stimuli. For this matter, we activated the MPP with single and 50 Hz frequency stimuli that simulated physiologic and deleterious conditions, while assessing the granule cell’s output under various conditions of pressure and Ca2+o. Our results reveal that pressure and Ca2+o produce an inverse modulation on synaptic input strength and network excitability. These coincident phenomena suggest a potential general mechanism of networks that adjusts gain as an inverse function of synaptic inputs’ strength. Such mechanism may serve for adaptation to variable pressure and other physiological and pathological conditions and may explain the increased sensitivity to strong sensory stimulation suffered by human deep-divers and cetaceans

    Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG

    Get PDF
    Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic glutamate receptors in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA and NMDA receptor systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDA receptors are more important than non-NMDA receptors for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic glutamate receptors tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity

    Dual-mode operation of neuronal networks involved in left-right alternation.

    No full text
    International audienceAll forms of locomotion are repetitive motor activities that require coordinated bilateral activation of muscles. The executive elements of locomotor control are networks of spinal neurons that determine gait pattern through the sequential activation of motor-neuron pools on either side of the body axis. However, little is known about the constraints that link left-right coordination to locomotor speed. Recent advances have indicated that both excitatory and inhibitory commissural neurons may be involved in left-right coordination. But the neural underpinnings of this, and a possible causal link between these different groups of commissural neurons and left-right alternation, are lacking. Here we show, using intersectional mouse genetics, that ablation of a group of transcriptionally defined commissural neurons--the V0 population--leads to a quadrupedal hopping at all frequencies of locomotion. The selective ablation of inhibitory V0 neurons leads to a lack of left-right pattern at low frequencies, mixed coordination at medium frequencies, and alternation at high locomotor frequencies. When ablation is targeted to excitatory V0 neurons, left-right alternation is present at low frequencies, and hopping is restricted to medium and high locomotor frequencies. Therefore, the intrinsic logic of the central control of locomotion incorporates a modular organization, with two subgroups of V0 neurons required for the existence of left-right alternating modes at different speeds of locomotion. The two molecularly distinct sets of commissural neurons may constrain species-related naturally occurring frequency-dependent coordination and be involved in the evolution of different gaits
    corecore