8,793 research outputs found

    Probability distribution of the maximum of a smooth temporal signal

    Full text link
    We present an approximate calculation for the distribution of the maximum of a smooth stationary temporal signal X(t). As an application, we compute the persistence exponent associated to the probability that the process remains below a non-zero level M. When X(t) is a Gaussian process, our results are expressed explicitly in terms of the two-time correlation function, f(t)=.Comment: Final version (1 major typo corrected; better introduction). Accepted in Phys. Rev. Let

    Kowalevski's analysis of the swinging Atwood's machine

    Get PDF
    We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is a infinite number of mass ratios M/mM/m where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so--called weak Painlev\'e type. However, in view of these expansions, it is not possible to distinguish between integrable and non integrable cases.Comment: 30 page

    Tau mesonic decays and strong anomaly of PCAC

    Full text link
    Strong anomaly of the PCAC is found in τωππν\tau\rightarrow\omega \pi\pi\nu and ωρν\omega\rho\nu in the chiral limit. It originates in WZW anomaly. Theoretical result of τωππν\tau\rightarrow\omega\pi\pi\nu agrees with data well and the measurement of τωρν\tau\rightarrow\omega\rho\nu will confirm the strong anomaly of PCAC. The strong anomaly of PCAC is studied.Comment: 27 page

    A Mathematical Theory of Stochastic Microlensing II. Random Images, Shear, and the Kac-Rice Formula

    Full text link
    Continuing our development of a mathematical theory of stochastic microlensing, we study the random shear and expected number of random lensed images of different types. In particular, we characterize the first three leading terms in the asymptotic expression of the joint probability density function (p.d.f.) of the random shear tensor at a general point in the lens plane due to point masses in the limit of an infinite number of stars. Up to this order, the p.d.f. depends on the magnitude of the shear tensor, the optical depth, and the mean number of stars through a combination of radial position and the stars' masses. As a consequence, the p.d.f.s of the shear components are seen to converge, in the limit of an infinite number of stars, to shifted Cauchy distributions, which shows that the shear components have heavy tails in that limit. The asymptotic p.d.f. of the shear magnitude in the limit of an infinite number of stars is also presented. Extending to general random distributions of the lenses, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of {\it global} expected number of positive parity images due to a general lensing map. Applying the result to microlensing, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars, where the stars are uniformly distributed. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars.Comment: To appear in JM

    Symmetries of modules of differential operators

    Full text link
    Let F_λ(S1){\cal F}\_\lambda(S^1) be the space of tensor densities of degree (or weight) λ\lambda on the circle S1S^1. The space Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1) of kk-th order linear differential operators from F_λ(S1){\cal F}\_\lambda(S^1) to F_μ(S1){\cal F}\_\mu(S^1) is a natural module over Diff(S1)\mathrm{Diff}(S^1), the diffeomorphism group of S1S^1. We determine the algebra of symmetries of the modules Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1), i.e., the linear maps on Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1) commuting with the Diff(S1)\mathrm{Diff}(S^1)-action. We also solve the same problem in the case of straight line R\mathbb{R} (instead of S1S^1) and compare the results in the compact and non-compact cases.Comment: 29 pages, LaTeX, 4 figure

    Photon Splitting in a Very Strong Magnetic Field

    Full text link
    Photon splitting in a very strong magnetic field is analyzed for energy ω<2m\omega < 2m. The amplitude obtained on the base of operator-diagram technique is used. It is shown that in a magnetic field much higher than critical one the splitting amplitude is independent on the field. Our calculation is in a good agreement with previous results of Adler and in a strong contradiction with recent paper of Mentzel et al.Comment: 5 pages,Revtex , 4 figure

    Generalization of Linearized Gouy-Chapman-Stern Model of Electric Double Layer for Nanostructured and Porous Electrodes: Deterministic and Stochastic Morphology

    Full text link
    We generalize linearized Gouy-Chapman-Stern theory of electric double layer for nanostructured and morphologically disordered electrodes. Equation for capacitance is obtained using linear Gouy-Chapman (GC) or Debye-u¨\rm{\ddot{u}}ckel equation for potential near complex electrode/electrolyte interface. The effect of surface morphology of an electrode on electric double layer (EDL) is obtained using "multiple scattering formalism" in surface curvature. The result for capacitance is expressed in terms of the ratio of Gouy screening length and the local principal radii of curvature of surface. We also include a contribution of compact layer, which is significant in overall prediction of capacitance. Our general results are analyzed in details for two special morphologies of electrodes, i.e. "nanoporous membrane" and "forest of nanopillars". Variations of local shapes and global size variations due to residual randomness in morphology are accounted as curvature fluctuations over a reference shape element. Particularly, the theory shows that the presence of geometrical fluctuations in porous systems causes enhanced dependence of capacitance on mean pore sizes and suppresses the magnitude of capacitance. Theory emphasizes a strong influence of overall morphology and its disorder on capacitance. Finally, our predictions are in reasonable agreement with recent experimental measurements on supercapacitive mesoporous systems

    Dynamical Reduction Models: present status and future developments

    Get PDF
    We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.Comment: 12 pages. Contribution to the Proceedings of the "Third International Workshop DICE2006", Castello di Piombino (Tuscany), September 11-15, 2006. Minor changes mad
    corecore