research

Symmetries of modules of differential operators

Abstract

Let F_λ(S1){\cal F}\_\lambda(S^1) be the space of tensor densities of degree (or weight) λ\lambda on the circle S1S^1. The space Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1) of kk-th order linear differential operators from F_λ(S1){\cal F}\_\lambda(S^1) to F_μ(S1){\cal F}\_\mu(S^1) is a natural module over Diff(S1)\mathrm{Diff}(S^1), the diffeomorphism group of S1S^1. We determine the algebra of symmetries of the modules Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1), i.e., the linear maps on Dk_λ,μ(S1){\cal D}^k\_{\lambda,\mu}(S^1) commuting with the Diff(S1)\mathrm{Diff}(S^1)-action. We also solve the same problem in the case of straight line R\mathbb{R} (instead of S1S^1) and compare the results in the compact and non-compact cases.Comment: 29 pages, LaTeX, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 19/03/2019