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Kowalevski’s analysis of the swinging Atwood’s

machine.
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Abstract

We study the Kowalevski expansions near singularities of the swinging At-
wood’s machine. We show that there is a infinite number of mass ratios M/m
where such expansions exist with the maximal number of arbitrary constants.
These expansions are of the so–called weak Painlevé type. However, in view of
these expansions, it is not possible to distinguish between integrable and non
integrable cases.
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1 Introduction

The swinging Atwood’s machine is a variable length pendulum of mass m on
the left, and a non swinging mass M on the right, tied together by a string, in
a constant gravitational field, see Figure (1). The coupling of the two masses
is expressed by the fact that the length of the string is fixed:

√

x2 + y2 + |z| = L, =⇒ x2 + y2 = (|z| − L)2

Up to a choice of origin for z, one can assume L = 0, so the constraint is
the cone z2 = x2 + y2. To describe the dynamics we choose to work with
constrained variables and write a Lagrangian

L =
m

2
(ẋ2 + ẏ2) +

M

2
ż2 − g(my + Mz) +

λ

2
(x2 + y2 − z2)

where λ, a Lagrange multiplier (of dimension MT−2), has been introduced,
whose equation of motion enforces the constraint. The equations of motion
read :

mẍ = λx (1)

mÿ = −mg + λy (2)

Mz̈ = −Mg − λz (3)

0 = x2 + y2 − z2 (4)

From these equations one can express λ in terms of positions and velocities:

λ =
xẍ + yÿ − zz̈ + g(y − z)

1
m(x2 + y2) + 1

M z2
=

mM

M + m

ż2 − ẋ2 − ẏ2 + g(y − z)

z2
(5)

Alternatively, rescaling

x → 1√
m

x, y → 1√
m

y, z → 1√
M

z

we can view the system as a unit mass particle moving on a cone

z2 =
M

m
(x2 + y2)

subjected to a constant field force





fx

fy

fz



 =





0
−g

√
m

−g
√

M




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Figure 1: Swinging Atwood’s machine.

The slope of the force in the (y, z) plane coincides with the angle of the cone.
The swinging Atwood’s machine has been studied in great detail by N.

Tufillaro and his coworkers, see [1–7]. They have first studied numerically the
equations of motion and shown that for most values of the mass ratio M/m
the motion appears to be chaotic, however for some values, like 3, 15, etc.
the motion seems less chaotic and could perhaps be integrable. In a further
study, Tufillaro [4] showed that the system is indeed integrable for M/m = 3 by
exhibiting a change of coordinates, somewhat related to parabolic coordinates,
in which separation of variables occurs. He was then able to solve the equations
of motion in terms of elliptic functions, which is quite peculiar since in general
integrable systems with two degrees of freedom can be solved only in terms of
hyperelliptic functions, such as for the Kowalevski top [8]. He also obtained
the second conserved quantity which ensures integrability. In the same paper,
he conjectured that the system is integrable for M/m = 15, · · · , 4n2 − 1, with
n integer.

However, later on, Casasayas, Nunes and Tufillaro proved [6] that the sys-
tem can be integrable for discrete values of the ratio M/m only in the interval
]1, 3], using non integrability theorems developed by Yoshida [9] and Ziglin.
The essence of the Yoshida–Ziglin argument is to study the monodromy de-
veloped by Jacobi variations around an exact solution, when the time variable
describes a loop in the complex plane. The monodromy must preserve con-
served quantities, but this is impossible in general if the monodromy group
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is not abelian. In the case at hand one can compute monodromies from hy-
pergeometric equations and conclude. We have also been informed by private
communication of J.P. Ramis, that he and his coworkers have proven that the
swinging Atwood’s machine is never integrable except for M/m = 3, using
methods from differential Galois theory.

The aim of our paper is to work out the Kowalevski analysis for this model.
Let us recall the idea of the Kowalevski method. If a dynamical system is
algebraically integrable one can expect to obtain expressions for the dynamical
variables in terms of quotients of theta functions defined on the Jacobian of
some algebraic curve of genus g, where g=2 for a system with 2 degrees of
freedom. Only quotients may appear because theta functions have monodromy
on the Jacobian torus, which needs to cancel. Hence denominators which can
vanish for any given initial conditions and for some finite value, in general
complex, of time will appear in the solution. Hence the equations of motion
must admit Laurent solutions –that is divergent for some value of time, with as
many parameters as there are initial conditions. S. Kowalevski first noted [8],
that this imposes strong constraints on these equations, from which she was
able to deduce the celebrated Kowalevski case of the top equation.

Looking for Laurent solutions to the swinging Atwood’s machine equations
of motion in the integrable case M/m = 3 we first noted that there are none,
but there exists so-called weak Painlevé solutions, that is Laurent developments
not in the time variable t but in some radical t1/k, generally called Puiseux
expansions.

It had already been discovered by A. Ramani and coworkers [10] that some
integrable systems require weakening the Kowalevski–Painlevé analysis to ob-
tain expansions at infinity of dynamical variables. This may be explained in
general, and is certainly the case for our example, by the fact that there is a
“better” variable which has true Laurent expansions and time itself can be ex-
pressed in terms of this variable through an algebraic equation which happens
to produce the given radicals. Moreover Ramani et al. advocated the idea
that the existence of weak Painlevé solutions is a criterion of integrability, like
in the Kowalevski’s case.

For our model of the swinging Atwood’s machine, we find that there are
weak Painlevé solutions not only when M/m = 15 but for a whole host of other
values of the mass ratio, all of them corresponding to obviously non integrable
cases. Hence this model provides a large number of counterexamples to the
above idea. We then study in detail the solutions around infinity which can be
extracted from these Kowalevski developments. Using Padé approximants we
are able to extend these solutions beyond the first new singularity and observe
how the new singularities obey Kowalevski exponents.

We also comment on the Poisson structure of the model, which is interest-
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ing due to the constraints between the dynamical variables, and the Poisson
brackets of the variables appearing in the Laurent series, which happens to be
of a nice canonical form. We notice that this illustrates the fact that it is the
global character of the conserved quantities that is of importance in defining
an integrable system.

One of us (M.T.) is happy to acknowledge useful conversations with J.P.
Ramis and J. Sauloy from Toulouse University, about their work on differential
Galois theory applied to the swinging Atwood’s machine. Finally we are happy
to thank the Maxima team1 for their software, with which we have performed
the computations in this paper.

2 Hamiltonian setup.

The description we have given of the swinging Atwood’s machine is a con-
strained system in the Lagrange formulation, so that the equations of motion
take a nice algebraic form.

In the articles [1–7] polar coordinates are used, so the constraint is “solved”
but the price to pay is the use of trigonometric functions. Using polar coordi-
nates x = r sin θ, y = −r cos θ the Hamiltonian reads:

H =
1

2(m + M)
p2

r +
1

2mr2
p2

θ + gr(M − m cos θ) (6)

where pr = (m + M)ṙ and pθ = mr2θ̇.
We now give a Hamiltonian description of this system, using as dynamical

variables the three coordinates x, y, z and the three momenta px, py, pz with
canonical Poisson brackets. The constraint

C1 ≡ z2 − x2 − y2 = 0 (7)

generates the flow:

{C1, px} = −2x, {C1, py} = −2y, {C1, pz} = 2z (8)

which is also generated by the one parameter group acting on phase space by:
(x, y, z) → (x, y, z), (px, py, pz) → (px − µx, py − µy, pz + µz) where µ is the
group parameter.

We want to describe the dynamics of our model as a Hamiltonian system
obtained by reduction of an invariant system under this group action [11]. In

1http://maxima.sourceforge.net/
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order to do that, consider the functions:

Ax = zpy + ypz

Ay = zpx + xpz

Az = xpy − ypx

These functions Poisson commute with the constraint C1 hence are invariant
under the group action. They are not independent however, since they are
related by:

yAy − xAx + zAz = 0 (9)

It is easy to check the Poisson brackets:

{Ax, Ay} = −Az, {Ax, Az} = −Ay, {Ay, Az} = Ax

{Ax, x} = 0, {Ax, y} = z, {Ax, z} = y

{Ay, x} = z, {Ay, y} = 0, {Ay, z} = x

{Az, x} = −y, {Az , y} = x, {Az, z} = 0

Let us consider the invariant Hamiltonian:

H =
1

2(m + M)z2

[

A2
x + A2

y +
M

m
A2

z

]

+ Mgz + mgy (10)

To check that H generates the equations of motion on the reduced system,
we compute:

ẋ = {H,x} =
1

m + M

1

z2

(

zAy −
M

m
yAz

)

(11)

ẏ = {H, y} =
1

m + M

1

z2

(

zAx +
M

m
xAz

)

(12)

ż = {H, z} =
1

m + M

1

z2
(xAy + yAx) (13)

The right hand sides of these equations are linear in the momenta px, py, pz,
however we cannot invert the system uniquely in order to express the momenta
in terms of the velocities. This is because, due to the symmetry ({H,C1} = 0)
we have xẋ + yẏ = zż so the equations are not independent. The solution is:

px = mẋ + µx (14)

py = mẏ + µy (15)

pz = Mż − µz (16)
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where µ is arbitrary. Similarly we compute ẍ = {H, ẋ}, etc... where ẋ, etc...
are the right hand sides of the above equations. Performing this calculation
and using the constraint C1 and eq.(9), we obtain the Lagrangian equation of
motion (1–3), with λ given by:

λ =
mM

m + M

1

z2

[

g(y − z) − 1

m2z2
A2

z

]

This coincides with eq.(5), as can be cheked using again eqs.(14–16) and the
constraint C1, to express Az in terms of ẋ, ẏ, ż.

Finally we express the energy in terms of velocities still using the con-
straints. We find:

E =
m

2
(ẋ2 + ẏ2) +

M

2
ż2 + g(my + Mz) (17)

which agrees with what we expect from the Lagrangian formulation.

3 The integrable case.

In order to understand what sort of Laurent expansions appears in the model
it is useful to first consider the case M/m = 3 which has been integrated by
Tufillaro [4]. Let us recall some of his results. He discovered that using polar
coordinates (r, θ) such that x = r sin θ, y = −r cos θ and r = z, and setting:

ξ2 = z[1 + sin(θ/2)], η2 = z[1 − sin(θ/2)]

then the Hamilton–Jacobi equation separates in the variables (ξ, η). These look
like parabolic coordinates, except that the half–angle θ/2 is used. Knowing ξ
and η one can recover x and y by:

x± ≡ x ± iy = ± i

2

(ξ ∓ iη)3

(ξ ± iη)
, z =

1

2
(ξ2 + η2) (18)

In fact, just for M = 3m, two terms involving couplings between ξ and η
disappear, and one gets, with momenta pξ = 4ξ̇(ξ2 + η2) etc. the expression
of the Hamiltonian, in which we have set m = 1:

H = [(p2
ξ + p2

η)/8 + 2g(ξ4 + η4)]/(ξ2 + η2)

Then it is clear that in this case the action S separates as a sum Sξ(ξ) +
Sη(η) where Sξ and Sη obey different elliptic equations (corresponding to dif-
ferent elliptic moduli):

(∂ξSξ)
2 = −16gξ4 + 8Eξ2 + I ≡ P+(ξ) (19)

(∂ηSη)
2 = −16gη4 + 8Eη2 − I ≡ P−(η) (20)
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where I is the separation constant. It can be expressed in terms of dynamical
variables by substracting the above two equations multiplied resp. by η2 and
ξ2, which eliminates E. Moreover we replace:

∂ξS = pξ = 4ξ̇(ξ2 + η2), ∂ηS = pη = 4η̇(ξ2 + η2) (21)

We get:

I/16 = (ξ2 + η2)(η2ξ̇2 − ξ2η̇2) + gξ2η2(ξ2 − η2)/(ξ2 + η2)

Returning to polar coordinates the integral of motion takes the form:

I/16 = r2θ̇[ṙ cos(θ/2) − rθ̇

2
sin(θ/2)] + gr2 sin(θ/2) cos2(θ/2)

We want to see if the equations of motion admit a solution which diverges
at finite time, and in that case what is the behavior of the Laurent expansion.

The general solution of the Hamilton–Jacobi equation is:

S = −Et +

∫ ξ
√

P+(ξ) dξ +

∫ η
√

P−(η) dη

According to the general theory we get the solution of the equations of motion
by writing ∂ES = cE and ∂IS = cI for two constants cE and cI . For cI 6= 0
we get:

t + cE =

∫ ξ 4ξ2

√

P+(ξ)
dξ +

∫ η 4η2

√

P−(η)
dη (22)

cI =
1

2

∫ ξ 1
√

P+(ξ)
dξ − 1

2

∫ η 1
√

P−(η)
dη (23)

For I = 0, the elliptic integrals degenerate to trigonometric ones. We get:

t + cE = − 1

2ω

(

√

1 − αξ2 +
√

1 − αη2
)

, α = 2g/E, ω = g/
√

2E (24)

1 −
√

1 − αξ2

1 +
√

1 − αξ2
= K2 1 −

√

1 − αη2

1 +
√

1 − αη2
, K2 = ecI (25)

so that setting ξ = sin(φξ)/
√

α, η = sin(φη)/
√

α the second equality reads:

tan(φξ/2) = K tan(φη/2)

Using the variable s = tan(φξ/2), ξ and η can be expressed rationally:

ξ =
1√
α

2s

1 + s2
, η =

1√
α

2Ks

K2 + s2
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Finally, one gets the time variation of S ≡ s2 by using eq.(24) which implies:

ωdt = dS

[

1

(1 + S)2
+

K2

(K2 + S)2

]

= − 8iK

K2 − 1

U dU

(U2 − 1)2

where we have parametrized S as:

S = iK
(K + i)U + (K − i)

(K − i)U − (K + i)

The variable U has been defined to send the poles S = −K2 and S = −1 to
U = ±1. One gets the two parameters solution (parameters K and E) up to
an origin for time, which we fix by requiring that t = 0 for U = 0:

U2 =
t

t − t∞
or U2 − 1 =

t∞
t − t∞

=⇒ t = −t∞
U2

1 − U2
, t∞ =

1

ω

4iK

K2 − 1

We shall soon see that t = t∞ is a second singularity of the dynamical variables,
that we can express explicitly. For ease of comparison with the following, we
present x±(t) = x(t) ± iy(t):

x+ = −2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U2 − 1)2
1

U

x− =
2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U2 − 1)2
U3

z = i
2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U2 − 1)2
U

λ = − 3ω2

64K2

(K2 − 1)2(K2 + 1)(U2 − 1)5

[(K − i)U − K − i] [(K + i)U + K − i] U4

In terms of the t variable, we get the simpler expressions:

x+(t) = − 2Kg

ω2(K2 − 1)2

[

(K2 + 1)

(

t − t∞
t∞

)3/2 (

t∞
t

)1/2

− 4iK

(

t − t∞
t∞

)2
]

(26)

x−(t) =
2Kg

ω2(K2 − 1)2

[

(K2 + 1)

(

t

t∞

)3/2 (

t∞
t − t∞

)1/2

− 4iK

(

t

t∞

)2
]

(27)

We see that x+ behaves as t−
1

2 and x− behaves as t
3

2 when t → 0. If

we expand around t = 0 we get Puiseux expansions in t
1

2 . These expansions
depend on three parameters, K and E plus the origin of time t0. This is
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because we are analyzing the trigonometric solution which fixes one of the
constants to I = 0. We shall see later on that it can be generalized to a
four parameter expansion in the elliptic case. The energy parameter appears
factorized in front of x+ and x− in the form of g/ω2 = 2E/g.

Around t∞, we see that x+ behaves as (t − t∞)
3

2 and x− behaves as (t −
t∞)−

1

2 which is symmetrical with the behaviour at t = 0. This is compatible
with the fact that the equations of motion admit a symmetry (x+(t), x−(t)) ↔
(−x−(t),−x+(t)).

Remark that x±(t) are defined on the two sheeted covering of the Riemann
sphere with two branch points at t = 0 and t = t∞. The variable U that we
have introduced is in fact a uniformizing variable for this covering, so that x±(t)
are rational functions of U . Moreover U ↔ −1/U corresponds to t ↔ (t∞ − t)
and exchanges x+ and −x−. The extra minus sign means that we have to
change the determination of the square root in the t variable. The U variable
makes this completely unambiguous:

x+

(

− 1

U

)

= −x−(U), z

(

− 1

U

)

= z(U), λ

(

− 1

U

)

= λ(U)

We emphasize that, although the system is integrable, the solutions diverge
with square root singularities at finite times t = 0, and t = t∞.

We now return to the elliptic case. Let us define the variables X = ξ2 −
E/(6g) and Y = η2 − E/(6g). The equations (22,23) become:

t + cE =
1

4i
√

g

∫ X (X + E/(6g))dX
√

P+(X)
+

1

4i
√

g

∫ Y (Y + E/(6g))dY
√

P−(Y )

cI =
1

4i
√

g

∫ X dX
√

P+(X)
− 1

4i
√

g

∫ Y dY
√

P−(Y )

where now:
P±(X) = 4X3 − g2(±I)X − g3(±I)

g2(I) =
1

3g2

(

E2 +
3

4
gI

)

, g3(I) =
E

27g3

(

E2 +
9

8
gI

)

Introducing the Weierstrass functions

X = ℘1(Z1) ≡ ℘(Z1, g2(I), g3(I)), Y = ℘2(Z2) ≡ ℘(Z2, g2(−I), g3(−I))

the above integrals reduce to:

t + cE =
1

4i
√

g

[

E

6g
(Z1 + Z2) − ζ1(Z1) − ζ2(Z2)

]

(28)

cI =
1

4i
√

g
[Z1 − Z2] (29)
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where ζ is the Weierstrass zeta function, ζ ′ = −℘. The ℘ function has two
periods 2ωj , j = 1, 2, so that ℘(z + 2ωj) = ℘(z), but the zeta function is quasi
periodic, ζ(z + 2ωj) = ζ(z) + 2ηj . Here we have two set of periods ωj and
ηj according to the function ℘1 or ℘2, which are in fact functions ωj(±I) and
ηj(±I).

Note that x±(t) have poles and zeroes when ξ ± iη vanish, that is when
ξ2 + η2 = X + Y + E/(3g) = 0. Hence we have to solve:

E/(3g) + ℘1(Z1) + ℘2(Z2) = 0 (30)

Z1 − Z2 − 4i
√

gcI = 0 (31)

But differentiating eqs.(28,29) we find δZ2 = δZ1 and

δt =
1

4i
√

g

(

E

3g
+ ℘1(Z1) + ℘2(Z2)

)

δZ1+
1

8i
√

g

(

℘′
1(Z1) + ℘′

2(Z2)
)

(δZ1)
2+· · ·

The first term vanishes when ξ2 +η2 = 0 hence around such a zero δZ1 ≃
√

δt.
As a consequence, in view of eq.(18), x±(t) behaves as either δt−1/2 or δt3/2

at such a point, according to the vanishing of ξ + iη or ξ − iη. Note this is
similar to the trigonometric case.

However finding the pattern of these singularities is messy, because in the
equations (30,31) we have two incommensurate lattices of periods for the two
Weierstrass functions. However we can easily see that there is an infinite num-
ber of singularities. This is because since the two lattices are incommensurate,
for any large R and small ǫ, one can choose V in the first lattice and W
in the second, such that |V − W | < ǫ and |V |, |W | > R. Starting from a
solution Z1, Z2 of our equations, we set Z ′

1 = Z1 + V and Z ′
2 = Z2 + W ,

which still obey eq.(30). However eq.(31) is violated at order ǫ. Choose
Z ′′

1 = Z ′
1, Z ′′

2 = Z ′′
1 − 4i

√
gcI and plug this in eq.(30). It then gets of order ǫ

but this is an equation for the variable Z1 which has, by complex analyticity,
an exact solution close to this approximate solution. Taking larger and larger
values for R one gets an infinite number of solutions. Around each of these
solutions we have Puiseux expansions in the variable δt1/2.

4 Kowalevski analysis.

If the swinging Atwood’s machine is an algebraically integrable system the dy-
namical variables can be expressed algebraically in terms of a linear motion on
some Abelian variety, in particular all variables and time can be complexified
at will. We may expect that, for general initial conditions, the dynamical vari-
ables will blow out for some (in general complex) value t0 of the time t. Around
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this value the dynamical variables should have Laurent behavior, hence one
expects to find Laurent solutions depending on N parameters (initial condi-
tions) if the phase space is of dimension N . In practice one searchs for Laurent
expansions at t = 0 (one fixes t0 = 0) so an admissible Laurent solution should
have N − 1 parameters, that is 3 parameters for the example at hand.

The Puiseux solutions we have found in previous section have the following
singularity: x and y blow up but z → 0, hence x2 + y2 → 0. This means that
the singular solutions are such that the mass m goes to the origin but rotating
faster and faster. If we expand x and y in negative powers of t there must
be large cancellations such that x2 + y2 → 0. It is much more convenient to
factorize x2+y2 and have the cancellation between the two factors. Reminding
that:

x± = x ± iy

the equations of motion are

mẍ+ = −img + λx+

mẍ− = img + λx−

Mz̈ = −Mg − λz

z2 = x+x− (32)

The value of λ is a consequence of these equations:

λ =
mM

M + m

ż2 − ẋ+ẋ− + g(y − z)

z2

where y = −i(x+ − x−)/2. Let us remark that this system of equations is
invariant under (x+, x−) → (−x−,−x+), in particular y and λ are invariant.
The system is also invariant under a similarity transformation:

x±(t) → µ2x±(t/µ), z(t) → µ2z(t/µ), λ(t) → 1

µ2
λ(t/µ)

We first analyze equations (32) at the leading order. We thus look for
solutions of the form:

x+ = a1t
p + · · · , x− = b1t

q + · · · ,

so that eq. (32) requires

z = c1 t
p+q

2 + · · · , c2
1 = a1b1

At lowest order we then have:

λ =
mM

4(M + m)

a1b1(p − q)2tp+q−2 + 4g(y − z)

a1b1tp+q
(33)
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Clearly equations of motion (32) require that λ behave as 1/t2 for solutions
blowing out as powers. At first sight there are two ways in which this can
happen: when the first term in the numerator is dominant, or when the second
term is dominant. We can always choose p ≤ q, up to exchange of x+ and x−,
hence p < 0 since we want to have at least one dynamical variable diverging.
On the other hand z → 0 so q is positive, hence y − z = O(tp). The first term
is dominant when q < 2, and for p 6= q one has indeed λ ≃ 1/t2. When q = 2
both terms are of the same order and for q > 2 the second term is dominant,
so that λ = O(t−q) which is not allowed. Hence we have basically only two
cases to consider, either p < 0, q < 2 in which the integrable case studied above
belongs (p = −1/2, q = 3/2), or the case −2 < p < 0, q = 2, which, as we will
see, covers more general values of the mass ratio M/m.

4.1 Integrable case.

Since p < 0, q < 2 we have p + q− 2 < (p, q, p+q
2 ), and we can neglect the term

g(y − z) at leading order in the expression of λ. We find, for p 6= q:

λ =
mM(p − q)2

4(M + m)

1

t2
+ · · ·

Similarly the equations of motion for x± give:

p(p − 1) =
M

4(M + m)
(p − q)2 = q(q − 1) (34)

so that (p−q)(p+q−1) = 0 hence, since p 6= q, p < q and we have p+q−1 = 0.
Since by positivity in eq.(34), p and q cannot belong to [0, 1] this implies,
together with p > p + q − 2 = −1 that:

−1 < p < 0, 1 < q < 2

Using p + q = 1 the mass ratio takes the form:

M = −4mpq = m[(p − q)2 − 1] = m[(2p − 1)2 − 1]

and the mass ratio M/m is thus in the interval ]0, 8[.
The integrable case corresponds to M = 3m, and falls into this analysis

with:

p = −1

2
, q =

3

2

These exponents are exactly those we have found in the exact solution of the
elliptic integrable case. There are no other values of p in ] − 1, 0[ compatible

13



with integer values of the mass ratio M/m which could, according to [4], cor-
respond to seemingly integrable behaviour. We thus consider, in the following,
the integrable case M/m = 3.

As noted above the second conserved quantity is given in polar coordinates
for m = 1, introducing for convenience H2 = I

√
2/8, by:

1

2
√

2
H2 = r2θ̇

d

dt
(r cos(θ/2)) +

g

2
(r sin θ)(r cos(θ/2))

which reads in cartesian coordinates as:

H2 =
1

√

z(z − y)
(xẏ − yẋ)

d

dt
(z2 − zy) + gx

√

z(z − y)

Taking the square to eliminate the square roots, we get:

H2
2 =

1

z(z − y)
(xẏ−yẋ)2

(

d

dt
(z2 − zy)

)2

+2gx(xẏ−yẋ)
d

dt
(z2−zy)+g2x2(z2−zy)

We can setup an expansion in powers of
√

t.

x+ = t−
1

2 (a1 + a2t
1

2 + · · ·)
x− = t

3

2 (b1 + b2t
1

2 + · · ·)
z = t

1

2 (d1 + d2t
1

2 + · · ·)
λ = t−2(l1 + l2t

1

2 + · · ·)

We already know that

a1b1 = d2
1, l1 =

3m

4

Inserting into the equations of motion, we find the recursive system:

K(s) ·









as+1

bs+1

ds+1

ls+1









=









As+1

Bs+1

Ds+1

Ls+1









K(s) =











m (s−1)(s−3)
4 − l1 0 0 −a1

0 m (s+1)(s+3)
4 − l1 0 −b1

0 0 M (s+1)(s−1)
4 + l1 d1

−b1 −a1 2d1 0











14



The square matrix in the left hand side is called the Kowalevski matrix, and
the vector in the right hand side is given by

As+1 =
s−1
∑

j=1

lj+1as−j+1 − imgδs,5

Bs+1 =
s−1
∑

j=1

lj+1bs−j+1 + imgδs,1

Ds+1 = −
s−1
∑

j=1

lj+1ds−j+1 − Mgδs,3

Ls+1 = −
s−1
∑

j=1

dj+1ds−j+1 +

s−1
∑

j=1

aj+1bs−j+1

The determinant of the Kowalevski matrix reads

det(K(s)) = −m2d2
1

2
(s + 2)s2(s − 2)

It has a double zero at s = 0 and a third zero at the integer value s = 2. Hence
potentially three arbitrary constants may appear in the expansion. Indeed
the miracle happens at the third level where the equations determining the
coefficients a3, b3 are degenerate, leaving one extra constant b3 = c1. The
rest of the expansion is then completely determined at all orders. We find in
particular:

x+ =
d2
1

b1

√
t

+
i d2

1 g

2 b2
1

− 3 c1 d2
1

√
t

b2
1

+

(

4 i c1 d2
1 − 7 b2

1 d1

)

g t

5 b3
1

+

+

((

2 c1 d2
1 + i b2

1 d1

)

g2 + 12 b1 c2
1 d2

1

)

t
3

2

8 b4
1

+ · · ·

x− = b1 t
3

2 +
i g t2

2
+ c1 t

5

2 −
(

2 i c1 d1 − b2
1

)

g t3

5 b1 d1
−

−
((

6 c1 d1 + 3 i b2
1

)

g2 − 60 b1 c2
1 d1

)

t
7

2

40 b2
1 d1

+ · · ·

The existence of such a “miracle” is exactly what S. Kowalevski noted in [8]
for her integrable case of the top. For this to happen one needs that the
determinant of K(s) vanishes for the correct number of integer values of the
recursive variable s, which allows for a new indeterminate to enter the ex-
pansion. Moreover in this case the linear system has to be solvable which is
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far from guaranteed. The general solution of the equations of motion must
admit a power series expansion, which thus must depend on 2N − 1 arbitrary
constants for a system of N degrees of freedom. In our case we find a solu-
tion depending correctly on three constants, which extends the trigonometric
solution described above.

Inserting these expansions into the formula for the energy (17) we obtain:

E = −md2
1

8b2
1

(g2 + 32c1b1)

Similarly, the second conserved quantity reads:

H2
2 =

2id5
1

b3
1

(b2
1 − 2ic1d1)

2

It is interesting to compare these general results to the expansion in the
trigonometric case eqs.(26,27). One finds:

b1 = e−
iπ
4

g(K2 + 1)

4
√

ω
√

K
√

K2 − 1

c1 = e−
3iπ
4

g
√

ω
√

K2 − 1(K2 + 1)

32K
3

2

d1 = e−
iπ
4

g
√

K(K2 + 1)

ω
3

2 (K2 − 1)
3

2

With these values one checks that H2 = 0 as it should be in the trigonometric
case, and that H is indeed equal to E.

The dynamical variables (x, y, z) and their time derivatives are expressed
in power series of

√
t. These power series have a non vanishing finite radius

of convergence (we know this at least in the trigonometric case from the ex-
act solution) and we can check it numerically. To do that we compute the
d’Alembert quotient |an+1/an| relative to a series

∑

n antn which tends to the
inverse of the radius of convergence of this series when it exists. We present
the result of this computation for high order n for the series x+(t), x−(t), z(t),
and λ(t) in the figure (2).

In this and following similar computations, all values are calculated with
absolute precision rational numbers using a formal computation tool. This
ensures accuracy of the result.

Since the Kowalevski expansion converges in a disk, the parameters (b1, c1, d1)
appearing in these series, and the origin of time t0, can be considered as co-
ordinates on an open set of phase space near infinity [12]. The question then
arises to compute the Poisson brackets in these coordinates.
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Figure 2: d’Alembert criterium for convergence for p=-1/2, q=3/2.

To do that, we start from:

{Az(t), x±(t)} = ±ix±(t) (35)

This equation is valid for any time since the time evolution is a canonical
transformation. We thus insert into it the series for x±(t), where these series

are really series in (t + t0)
1

2 . Similarly

Az(t) = i
m

2
(x+ẋ− − x−ẋ+)(t)

is expressed as a series in (t + t0)
1

2 and eq.(35) is an identity in t. The Poisson
bracket is computed with the rule:

{F,G} =

(

∂F

∂t0

∂G

∂b1
− ∂G

∂t0

∂F

∂b1

)

{t0, b1} +

(

∂F

∂t0

∂G

∂c1
− ∂G

∂t0

∂F

∂c1

)

{t0, c1} +

(

∂F

∂t0

∂G

∂d1
− ∂G

∂t0

∂F

d1

)

{t0, d1} +

(

∂F

∂b1

∂G

∂c1
− ∂G

∂b1

∂F

∂c1

)

{b1, c1} +

(

∂F

∂b1

∂G

∂d1
− ∂G

∂b1

∂F

∂d1

)

{b1, d1} +

(

∂F

∂c1

∂G

∂d1
− ∂G

∂c1

∂F

∂d1

)

{c1, d1}
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Plugging F = Az(t + t0) and G = x±(t + t0) and identifying term by term in
(t+t0) we get an infinite system for the six Poisson brackets of the coordinates,
which is compatible, and whose solution is given by:

{t0, d1} = 0

{t0, b1} = 0

{t0, c1} =
b1

4md2
1

{b1, d1} =
b1

2md1

{c1, d1} =
g2 + 16b1c1

32mb1d1

{c1, b1} =
g2 + 32b1c1

32md2
1

We can then check that

{H, b1} = {H, c1} = {H, d1} = 0, {H, t0} = 1

Finally we see that canonical coordinates can be chosen to be the pair of cou-
ples (H, t0) and (log b1,md2

1), hence the Kowalevski constants are essentially
Darboux coordinates in a neighbourhood of infinity.

This shows the interest of these Darboux coordinates in a vicinity of infinity,
but the whole question of integrability is a global one. Our problem is therefore
to try to extract some information from the Kowalevski series beyond their
disk of convergence. In the following we investigate this problem numerically.
First we have seen that an+1/an tends to a complex number that we call with

hindsight t
−1/2
∞ . Hence an behaves asymptotically as an ≃ t

−n/2
∞ . One can do

even better and look at the prefactor. Assuming that

an ≃ Anαt−n/2
∞

we can extract the coefficient α by computing the quantity:

lim
n→∞

n2

[

an−2an

a2
n−1

− 1

]

= −α

We show the result of this calculation in figure (3). Note that the curves begin
by large oscillations but for n sufficiently large, in the asymptotic regime, the
exponents α tend to constants. Comparing with the dominant terms in the
binomial formula:

∑

nαzn ≃z→1 (1 − z)−1−α

we see that setting z =
√

t/t∞, we read from figure (3) the various exponents:
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Figure 3: Exponents −α as functions of n, p=-1/2, q=3/2.

x+(t) ≃ (1 − z)3/2,

x−(t) ≃ (1 − z)−1/2,

z(t) ≃ (1 − z)1/2,
λ(t) ≃ (1 − z)−2,

The consequence of this observation is that x±(t) have Kowalevski expan-
sions around t∞ with indices which are exchanged as compared to those around
t = 0. Hence we know that:

x+ = −b′1 (t∞ − t)
3

2 − i g (t∞ − t)2

2
− c′1 (t∞ − t)

5

2 + · · ·

x− = − d′1
2

b′1
√

t∞ − t
− i d′1

2 g

2 b′1
2 +

3 c′1 d′1
2 √t∞ − t

b′1
2 + · · ·

where we have introduced a change of sign required by the symmetry x± →
−x∓, and the symmetry of the equations of motion under t → t∞ − t. The
series expansions have new parameters b′1, c′1 and d′1. In the trigonometric case
we see from the explicit formulae that they are equal to the original parameters,
see eqs.(26, 27).
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We have learned from the previous analysis that the singularities are al-
ways of the Kowalevski type, with well-defined exponents. This is perfectly
consistent with the exact solution in the trigonometric and elliptic case.

4.2 Non integrable case.

We now explore the region of parameters −2 < p < 0, q = 2. We assume that:

x+ ≃ a1t
p, x− ≃ b1t

2, z ≃ c1t
p

2
+1, c2

1 = a1b1

Notice that z → 0 since we assume p > −2, and that y = − i
2(x+ − x−) ≃

− i
2a1t

p. We see that both terms in eq.(33) for λ contribute:

λ ≃ mM

M + m

(

(p

2
− 1

)2
− ig

2b1

)

1

t2

The x± equation give:

mp(p − 1) =
mM

M + m

(

(p

2
− 1

)2
− ig

2b1

)

2mb1 = img +
mM

M + m

(

(p

2
− 1

)2
− ig

2b1

)

b1

Solving for b1 we find

M = −4m
p − 1

p + 2
, b1 = − ig

(p − 2)(p + 1)

Notice that the mass ratio is positive if −2 < p < 0, and that:

λ ≃ mp(p − 1)

t2

For relatively prime integers r and k we set:

p = − r

k
, −2k < −r < −k

We perform the Puiseux expansions:

x+ = t−
r
k (a1 + a2t

1

k + · · ·)
x− = t2(b1 + b2t

1

k + · · ·)
z = t−

r
2k

+1(d1 + d2t
1

k + · · ·)
λ = t−2(l1 + l2t

1

k + · · ·)
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We already know that

l1 = m
r(r + k)

k2
, a1 =

d2
1

b1
, b1 = − igk2

(r + 2k)(r − k)
, M = 4m

r + k

2k − r

When we plug this into the equations of motion, we get a system of the form:

Es : K(s) ·









as+1

bs+1

ds+1

ls+1









=









As+1

Bs+1

Ds+1

Ls+1









(36)

where the Kowalevski matrix reads:

K(s) =











m (s−r)(s−r−k)
k2 − l1 0 0 −a1

0 m (2k+s)(k+s)
k2 − l1 0 −b1

0 0 M (k+s−r/2)(s−r/2)
k2 + l1 d1

−b1 −a1 2d1 0











and the right hand side of equation Es is given by:

As+1 =
s

∑

j=2

aj ls+2−j − imgδs,2k+r

Bs+1 =

s
∑

j=2

bj ls+2−j

Ds+1 = −
s

∑

j=2

dj ls+2−j − Mgδs,k+r/2

Ls+1 = −
s

∑

j=2

djds+2−j +
s

∑

j=2

ajbs+2−j (37)

For s = 1, the quantities A2, B2, D2, L2 are meant to be zero. The determinant
of the Kowalevski matrix reads:

det(K(s)) = −6m2d2
1

(2k + r)

k4(2k − r)
s(s + k)(s − r)(s + k − r)

In order that this determinant vanishes for two positive integer values of s,
assuming k > 0, we should have

r > 0, r − k > 0
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From the equation for Ds+1 it is natural to choose r even, otherwise the weight
Mg would disappear from the problem which is not physical. In order for r/k
to be irreducible, we must choose k odd. Setting r = 2r′ we finally get:

k

2
< r′ < k, p = −2

r′

k
(38)

When things are setup this way the Kowalevski determinant has two strictly
positive integer roots, so that, potentially three arbitrary constants enter the
expansion, or the expansion is impossible. Impossibility occurs when the right–
hand side of equation Es is non vanishing and doesn’t belong to the image of
K(s) for values of s which are Kowalevski indices. It turns out that in most
cases the right–hand side vanishes as we now show.

First, since we want to examine the behavior for s = r − k and s = r we
can limit ourselves to studying the system for s = 1, · · · , r. In this case the
Kronecker deltas in eqs.(37) always vanish. For δs,2k+r it is obvious, for δs,k+r/2

note that, since k ≥ 1 + r/2 we have k + r/2 ≥ r + 1. Since the induction
starts with A2 = B2 = D2 = L2 = 0, we get, if s = 1 is not a Kowalevski
index that a2 = b2 = d2 = l2 = 0, hence the right–hand side vanishes for
the next equation s = 2. This goes all the way up to s = r − k, hence when
we hit the first Kowalevski index, it is always with vanishing right–hand side.
The existence of a non trivial solution ar−k+1, · · · , lr−k+1 is thus guaranteed.
Let us assume for the time being that the first Kowalevski index is such that
(r − k) > 1, that is r ≥ k + 2.

As a consequence of this previous step, when s = r − k + 1 we find that
As+1 reduces to ar+k−1l2 which also vanishes because l2 = 0. More generally
we have As+1 =

∑s
j=r−k+1 ajls+2−j which vanishes when s + 2− j < r− k + 1

for all j in the sum, and similarly for the other components. This occurs when
s < 2(r − k). For s = 2(r − k) the right–hand side of equation Es doesn’t
vanish, and assuming we are not on a Kowalevski index, there is a unique non
vanishing solution a2(r−k)+1, · · · , l2(r−k)+1. The process continues and it is easy
to show by induction that the right–hand side of equation Es doesn’t vanish
only for s = n(r−k), n positive integer, so non trivial solutions are of the form
an(r−k)+1, · · · , ln(r−k)+1. Indeed, to get a non vanishing ajls+2−j we need to
have j = n(r−k)+1 and s+2−j = n′(r−k)+1 so that s = (n+n′)(r−k). In this
case only we have As+1, · · · , Ls+1 and thus as+1, · · · , ls+1, non vanishing. This
shows that the next non vanishing positions are of the form (n+n′)(r− k)+1
establishing the recurrence.

The second Kowalevski index is s = r and this cannot be of the form
n(r − k). Indeed, since r and k are relatively prime, if we have r = n(r − k)
we get (n − 1)r = nk, hence n = pr and n − 1 = qk for some integers p and
q. Then (n − 1)r = nk = qkr = prk so that p = q and finally 1 = p(r − k)
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which is only possible for p = 1 and r = k + 1. This is precisely the case we
have excluded up to now. As a consequence, when we arrive at the second
Kowalevski index s = r, the right–hand side of equation Es vanishes and there
is a non trivial solution, with an extra constant.

We have shown that two new constants of motion always appear for all
cases r = k + 3, k + 5, · · · , r = 2k − 2. This covers an infinite number of
values of the mass ratio M/m for which the Kowalevski criterion is satisfied
(with weak Painlevé solutions), but for which the system is presumably non
integrable.

Finally we discuss the case k = r+1. The first Kowalevski index is s = 1. In
this case the right–hand side vanishes and we have automatically a non trivial
solution [a2, b2, d2, l2]. From this point, all other solutions of the linear system
don’t vanish, and in particular, for the second Kowalevski index, s = r, the
right–hand side of the system is not trivial. For a solution to exist it must be in
the image of K(r). Equivalently, let us consider a covector U = [u1, u2, u3, u4]
such that U.K(r) = 0. Explicitly:

u1 = 2 g2 k5, u2 = d2
1 (k + 1)(3k + 1)2, u3 = i d1 g k2 (k − 1)(3k + 1)

u4 = −2 img k (k + 1)(2k + 1)(3k + 1)

The condition to be satisfied is that the scalar product:

W (s) = u1As+1 + u2Bs+1 + u3Ds+1 + u4Ls+1

of this covector and the right–hand side of eq. (36) vanishes for s = r = k + 1.
For arbitrary k and s = 3, 4, ... we have computed this scalar product W (s),

and we have observed that W (s) has a factor (s− k + 1). For example we get:

W (s = 3) = −mc3
1d

2
1(k − 2)(k + 1)(2k + 1)(3k + 1)4

4g2k5(k + 2)

Note the factor (k − 2) = (r − s). For s = 4 we next get:

W (s = 4) =
imc4

1d
2
1(k − 3)(k + 1)(2k + 1)(3k + 1)4P6(k)

96g3(k − 1)2k8(k + 2)2(k + 3)

with the factor (k−3) = (r−s). Here c1 is the Kowalevski constant which has
be introduced at s = 1, and P6(k) is some polynomial in k of degree 6. The
factors in the denominator of course come from similar factors in det(K(s)).
The expression for s = 5 has the same type of factors in the numerator and
denominator, with a more complicated polynomial P7(k) and always a factor
(r−s). This behavior is persistent as far as one can compute. The consequence
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of the presence of the factor (r − s) is that, for any k, when we arrive at the
second Kowalevski index, s = r = k + 1, the scalar product W (k + 1) vanishes
and the linear system is solvable. We can thus state that for all admissible pairs
(k, r) the swinging Atwood machine has weak Painlevé expansions depending
on the full set of parameters.

For example an interesting case occurs when the mass ratio M/m = 15
where the system doesn’t look chaotic, see [2]. This case is obtained when
k = 19 and r = 26. The linear system is solvable in this case, although the
new arbitrary constants occur very far from the beginning of the expansion.
We shall refrain to exhibit the solution in this case, since it is very bulky, and
proceed to show what happens with smaller values of k and r.

4.3 Example: the case k = 3, r = 4.

When k = 3 we have necessarily r = 4. The Kowalevski exponents are s = 0,
s = 1, s = 4. The dynamical variables x± expand in Puiseux series of t1/3

which take the form:

x+ = t−
4

3 d2
1

(

10 i

9 g
+ 0 t

1

3 +
140 i c2

1

729 g3
t

2

3 +
14000 c3

1

59049 g4
t

3

3 +

+
1960 i c4

1 m − 32805 ic2 g4

91854 g5 m
t

4

3 + · · ·
)

x− = t2
(

−9 i g

10
+ c1 t

1

3 +
7 i c2

1

30 g
t

2

3 +
14 c3

1

243 g2
t

3

3 +

+

(

96124 i c4
1 m − 177147 i c2 g4

)

918540 g3 m
t

4

3 + · · ·
)

This solution depends on 4 arbitrary constants: t0, d1, c1, c2 (in the above
expansions t should always be understood as t + t0). We obtain

E ≡ H =
5 d2

1

(

13412 c4
1 m − 19683 c2 g4

)

91854 g4
(39)

The above constants can be used as local coordinates on phase space. To
compute the Poisson brackets of the Kowalevski constants, we proceed as in
the previous section considering {Az(t), x±(t)} = ±ix±(t). We find:

{t0, c1} = 0 (40)

{t0, d1} = 0 (41)

{t0, c2} =
14

15

1

d2
1

(42)
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Figure 4: d’Alembert criterium for convergence, lim an+1/an in the non integrable
case c1 = 1, c2 = 2 for N = 450.

{d1, c1} = i
3 g

20m

1

d1
(43)

{d1, c2} = i
13412

32805g3

c3
1

d1
(44)

{c1, c2} = −i

(

13412 c4
1 m − 19683 c2 g4

)

65610 d2
1 g3 m

= −i
7g

25m

E

d4
1

(45)

It is remarquable that these six relations ensure the compatibility of an infinite
set of relations. One verifies easily the Jacobi identity in spite of the crazy
numbers appearing. We can compute the Poisson brackets with H

{H, t0} = 1

{H, d1} = 0

{H, c1} = 0

{H, c2} = 0
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so that t0 is the conjugate variable of H as it should be and the other ones
are constants of motion. Notice that (d2

1, c1) is a pair of canonical variables
commuting with the pair (H, t0). Kowalevski constants are essentially Darboux
coordinates.

If there were an extra conserved quantity it would therefore be a function
F (c1, c2, d1). The variable c2 can be eliminated through H so that we can
write as well F (H, c1, d1).

As in the integrable case we can compute numerically the radius of conver-
gence, and the exponents which nicely fit with the above Kowalevski analysis,
as shown in Figure(5).

Figure 5: Exponents at singularities in the non integrable case c1 = 1, c2 = 2 for
N = 450.

To go further, we also compute the Padé approximants of the series. It
is more convenient to consider the logarithmic derivatives ẋ±/x± because the
residues of the poles are the exponents. We present the polar decomposition
of the [74, 75] Padé approximant fo ẋ+/x+. This shows clearly eight true
singularities with residues respectively -1.33 and 2 (up to numerical errors)
consistent with the Kowalevski analysis. The other poles having small residues
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Figure 6: Poles and zeroes of Padé approximant [M, M + 1] of ẋ+/x+ in the non
integrable case c1 = 1, c2 = 2, M = 59, and N = 119.

correspond to strings of poles and zeroes representing algebraic branch cuts in
the Padé analysis. Note we have set t = z3 and we have cancelled the leading
z−4 at the origin.

ẋ+/x+ =
2.07 + .0366 i

0.812 + 0.618 i + z
+

.0295 + 0.016 i

0.813 + 0.622 i + z
+ · · ·

+
2.05 − .0136 i

−0.33 + 1.04 i + z
+

.0351 − .00792 i

−0.332 + 1.04 i + z
+ · · ·

+
2.13 − .0627 i

−0.95 − 0.012 i + z
+

.0725 − .0176 i

−0.954 − 1.33 × 10−2 i + z
+ · · ·

+
−1.34 − .00154 i

−0.637 − 0.83 × i + z
+

−.00711 + 0.0025 i

−6.49 × 10−1 − 8.52 × 10−1 i + z
+ · · ·

+
2.38 − 0.027 i

−0.192 − 0.703 i + z
+

.0281 + .0125 i

−0.192 − 0.705 i + z
+ · · ·

+
−1.34 + 3.547 × 10−4 i

0.175 − 0.84 i + z
+

−0.0064 − 3.344 × 10−4 i

0.177 − 0.85 i + z
+ · · ·
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+
2.29 + .114 i

0.629 − 0.545 i + z
+

0.077 − .0335 i

0.63 − 0.547 i + z
+ · · ·

+
−1.34 − .00401 i

1.45 − 0.586 × 10−1 i + z
+

.0802 − .0866 i

1.62 − 0.77 i + z
+ · · ·

We see that this structure is very similar to the one we have observed in the
integrable elliptic case. This semi–local analysis doesn’t appear to be able to
discriminate between the integrable and non integrable cases.

5 Conclusion.

We have studied the swinging Atwood machine, which is believed to be non
integrable except for the mass ratio M/m = 3. We have shown on the ex-
plicit solution of the integrable case that the Kowalevski analysis is valid,
but requires weak Painlevé expansions. We have extended this weak Painlevé
analysis for other values of the mass ratio, and shown that it is valid for an
infinite number of cases. Hence this model is remarkable in that it exhibits
an infinite number of cases where the Kowalevski analysis works at the price
of using Puiseux expansions. However only one of these cases is known to be
integrable, while the other ones are believed to be not integrable.

In the cases where Kowalevski expansions are available, we have shown that
the constants appearing in these expansions provide Darboux coordinates on
an open set of phase space around infinity. The question of integrability of
the system therefore reduces to the global nature of this coordinate system
(t0, c1, c2, d1) on phase space.

On this open set, knowing the Poisson brackets eqs.(40-45), we can try to
find the conjugate variable of t0. We find that H must be of the form:

H = −15

14
d2
1c2 + h(c1, d1)

The first term agrees with the exact formula in equation (39). The function
h(c1, d1) is not determined but it is of course crucial to have a “good” function
H(ẋ+, ẋ−, x+, x−). Clearly we can, in principle, invert locally the system of
equations

x+ = x+(t − t0, c1, c2, d1)

x− = x−(t − t0, c1, c2, d1)

ẋ+ = ẋ+(t − t0, c1, c2, d1)

ẋ− = ẋ−(t − t0, c1, c2, d1)
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where in the right hand sides we mean the Kowalevski series. In doing so, we
will find

t − t0 = T (x+, x−, ẋ+, ẋ−)

c1 = C1(x+, x−, ẋ+, ẋ−)

c2 = C2(x+, x−, ẋ+, ẋ−)

d1 = D1(x+, x−, ẋ+, ẋ−)

but the functions T,C1, C2,D1 will behave in general extremely badly. All this
shows that it is in general impossible to make statements about the integrabil-
ity of the system on the only basis of the Kowalevski analysis. In this context
it is remarkable that the global hamiltonian indeed exists, and it is even more
remarkable that a second global hamiltonian exists in the integrable case. We
see here in a striking way the global nature of integrability.

In the non integrable case, in an attempt to progress beyond the analysis of
a single singularity, we have used Padé expansions. In this semi–local analysis,
the panorama which appears is still remarkably similar to the one appearing
in the elliptic integrable case. Hence Kowalevski analysis is not sufficient to
characterize integrability. Nevertheless it is a very non trivial property whose
significance remains mysterious.
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