685 research outputs found

    Effectiveness of Terbutaline Pump for the Prevention of Preterm Birth. A Systematic Review and Meta-Analysis

    Get PDF
    Subcutaneous terbutaline (SQ terbutaline) infusion by pump is used in pregnant women as a prolonged (beyond 48-72 h) maintenance tocolytic following acute treatment of preterm contractions. The effectiveness and safety of this maintenance tocolysis have not been clearly established. We aimed to systematically evaluate the effectiveness and safety of subcutaneous (SQ) terbutaline infusion by pump for maintenance tocolysis.MEDLINE, EMBASE, CINAHL, the Cochrane Library, the Centre for Reviews and Dissemination databases, post-marketing surveillance data and grey literature were searched up to April 2011 for relevant experimental and observational studies. Two randomized trials, one nonrandomized trial, and 11 observational studies met inclusion criteria. Non-comparative studies were considered only for pump-related harms. We excluded case-reports but sought FDA summaries of post-marketing surveillance data. Non-English records without an English abstract were excluded. Evidence of low strength from observational studies with risk of bias favored SQ terbutaline pump for the outcomes of delivery at <32 and <37 weeks, mean days of pregnancy prolongation, and neonatal death. Observational studies of medium to high risk of bias also demonstrated benefit for other surrogate outcomes, such as birthweight and neonatal intensive care unit (NICU) admission. Several cases of maternal deaths and maternal cardiovascular events have been reported in patients receiving terbutaline tocolysis.Although evidence suggests that pump therapy may be beneficial as maintenance tocolysis, our confidence in its validity and reproducibility is low, suggesting that its use should be limited to the research setting. Concerns regarding safety of therapy persist

    Genotype-Temperature Interaction in the Regulation of Development, Growth, and Morphometrics in Wild-Type, and Growth-Hormone Transgenic Coho Salmon

    Get PDF
    The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes), are particularly influenced by surrounding temperatures.By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8 degrees and 18 degrees C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12 degrees C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16 degrees C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type, influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental risk assessments evaluating potential ecological effects

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated
    • …
    corecore