59 research outputs found

    Towards Prediction of Radiation Pneumonitis Arising from Lung Cancer Patients Using Machine Learning Approaches

    Get PDF
    Radiation pneumonitis (RP) is a potentially fatal side effect arising in lung cancer patients who receive radiotherapy as part of their treatment. For the modeling of RP outcomes data, several predictive models based on traditional statistical methods and machine learning techniques have been reported. However, no guidance to variation in performance has been provided to date. In this study, we explore several machine learning algorithms for classification of RP data. The performance of these classification algorithms is investigated in conjunction with several feature selection strategies and the impact of the feature selection strategy on performance is further evaluated. The extracted features include patients demographic, clinical and pathological variables, treatment techniques, and dose-volume metrics. In conjunction, we have been developing an in-house Matlab-based open source software tool, called DREES, customized for modeling and exploring dose response in radiation oncology. This software has been upgraded with a popular classification algorithm called support vector machine (SVM), which seems to provide improved performance in our exploration analysis and has strong potential to strengthen the ability of radiotherapy modelers in analyzing radiotherapy outcomes data

    A Graphical Tool and Methods for Assessing Margin Definition From Daily Image Deformations

    Get PDF
    Estimating the proper margins for the planning target volume (PTV) could be a challenging task in cases where the organ undergoes significant changes during the course of radiotherapy treatment. Developments in image-guidance and the presence of onboard imaging technologies facilitate the process of correcting setup errors. However, estimation of errors to organ motions remain an open question due to the lack of proper software tools to accompany these imaging technological advances. Therefore, we have developed a new tool for visualization and quantification of deformations from daily images. The tool allows for estimation of tumor coverage and normal tissue exposure as a function of selected margin (isotropic or anisotropic). Moreover, the software allows estimation of the optimal margin based on the probability of an organ being present at a particular location. Methods based on swarm intelligence, specifically Ant Colony Optimization (ACO) are used to provide an efficient estimate of the optimal margin extent in each direction. ACO can provide global optimal solutions in highly nonlinear problems such as margin estimation. The proposed method is demonstrated using cases from gastric lymphoma with daily TomoTherapy megavoltage CT (MVCT) contours. Preliminary results using Dice similarity index are promising and it is expected that the proposed tool will be very helpful and have significant impact for guiding future margin definition protocols

    Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone

    Get PDF
    Background: Glioblastoma (GBM) is the most common malignant central nervous system tumor, and MGMT promoter hypermethylation in this tumor has been shown to be associated with better prognosis. We evaluated the capacity of radiomics features to add complementary information to MGMT status, to improve the ability to predict prognosis. Methods: 159 patients with untreated GBM were included in this study and divided into training and independent test sets. 286 radiomics features were extracted from the magnetic resonance images acquired prior to any treatments. A least absolute shrinkage selection operator (LASSO) selection followed by Kaplan-Meier analysis was used to determine the prognostic value of radiomics features to predict overall survival (OS). The combination of MGMT status with radiomics was also investigated and all results were validated on the independent test set. Results: LASSO analysis identified 8 out of the 286 radiomic features to be relevant which were then used for determining association to OS. One feature (edge descriptor) remained significant on the external validation cohort after multiple testing (p=0.04) and the combination with MGMT identified a group of patients with the best prognosis with a survival probability of 0.61 after 43 months (p=0.0005). Conclusion: Our results suggest that combining radiomics with MGMT is more accurate in stratifying patients into groups of different survival risks when compared to with using these predictors in isolation. We identified two subgroups within patients who have methylated MGMT: one with a similar survival to unmethylated MGMT patients and the other with a significantly longer OS

    Technical note: Extension of CERR for computational radiomics: a comprehensive MATLAB platform for reproducible radiomics research

    Get PDF
    PurposeRadiomics is a growing field of image quantitation, but it lacks stable and high-quality software systems. We extended the capabilities of the Computational Environment for Radiological Research (CERR) to create a comprehensive, open-source, MATLAB-based software platform with an emphasis on reproducibility, speed, and clinical integration of radiomics research. MethodThe radiomics tools in CERR were designed specifically to quantitate medical images in combination with CERR's core functionalities of radiological data import, transformation, management, image segmentation, and visualization. CERR allows for batch calculation and visualization of radiomics features, and provides a user-friendly data structure for radiomics metadata. All radiomics computations are vectorized for speed. Additionally, a test suite is provided for reconstruction and comparison with radiomics features computed using other software platforms such as the Insight Toolkit (ITK) and PyRadiomics. CERR was evaluated according to the standards defined by the Image Biomarker Standardization Initiative. CERR's radiomics feature calculation was integrated with the clinically used MIM software using its MATLAB((R)) application programming interface. ResultsThe CERR provides a comprehensive computational platform for radiomics analysis. Matrix formulations for the compute-intensive Haralick texture resulted in speeds that are superior to the implementation in ITK 4.12. For an image discretized into 32 bins, CERR achieved a speedup of 3.5 times over ITK. The CERR test suite enabled the successful identification of programming errors as well as genuine differences in radiomics definitions and calculations across the software packages tested. ConclusionThe CERR's radiomics capabilities are comprehensive, open-source, and fast, making it an attractive platform for developing and exploring radiomics signatures across institutions. The ability to both choose from a wide variety of radiomics implementations and to integrate with a clinical workflow makes CERR useful for retrospective as well as prospective research analyses

    Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation

    Get PDF
    Purpose: The aim of this paper is to define the requirements and describe the design and implementation of a standard benchmark tool for evaluation and validation of PET-auto-segmentation (PET-AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by the American Association of Physicists in Medicine (AAPM).Methods: The recommendations published in the AAPM TG211 report were used to derive a set of required features and to guide the design and structure of a benchmarking software tool. These items included the selection of appropriate representative data and reference contours obtained from established approaches and the description of available metrics. The benchmark was designed in a way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its main purpose of being a standard testing platform for newly developed PET-AS methods. An example of implementation of the proposed framework, named PETASset, was built. In this work, a selection of PET-AS methods representing common approaches to PET image segmentation was evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the software as a benchmark platform.Results: A selection of clinical, physical, and simulated phantom data, including "best estimates" reference contours from macroscopic specimens, simulation template, and CT scans was built into the PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of any given PET-AS algorithm to the reference contours. In addition, a tool to generate structured reports on the evaluation of the performance of PET-AS algorithms against the reference contours was built. The variation of the metric agreement values with the reference contours across the PET-AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and 1.00 for DSC, PPV, and the S metric, respectively. Examples of agreement limits were provided to show how the software could be used to evaluate a new algorithm against the existing state-of-the art.Conclusions: PETASset provides a platform that allows standardizing the evaluation and comparison of different PET-AS methods on a wide range of PET datasets. The developed platform will be available to users willing to evaluate their PET-AS methods and contribute with more evaluation datasets. </p

    The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights

    Get PDF
    Standardizing convolutional filters that enhance specific structures and patterns in medical imaging enables reproducible radiomics analyses, improving consistency and reliability for enhanced clinical insights. Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking

    Preferential Utilization of Aromatic Compounds over Glucose by Pseudomonas putida CSV86

    Get PDF
    Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compounds and organic acids; however, organic acids suppressed glucose utilization
    corecore