8 research outputs found

    A novel Atg5-shRNA mouse model enables temporal control of Autophagy in vivo.

    Get PDF
    Macroautophagy/autophagy is an evolutionarily conserved catabolic pathway whose modulation has been linked to diverse disease states, including age-associated disorders. Conventional and conditional whole-body knockout mouse models of key autophagy genes display perinatal death and lethal neurotoxicity, respectively, limiting their applications for in vivo studies. Here, we have developed an inducible shRNA mouse model targeting Atg5, allowing us to dynamically inhibit autophagy in vivo, termed ATG5i mice. The lack of brain-associated shRNA expression in this model circumvents the lethal phenotypes associated with complete autophagy knockouts. We show that ATG5i mice recapitulate many of the previously described phenotypes of tissue-specific knockouts. While restoration of autophagy in the liver rescues hepatomegaly and other pathologies associated with autophagy deficiency, this coincides with the development of hepatic fibrosis. These results highlight the need to consider the potential side effects of systemic anti-autophagy therapies

    Autophagy maintains the homeostatic environment in the male reproductive accessory organs playing a key role in fertility

    No full text
    Autophagy has been implicated in male fertility but its specific role in the post-testicular organs remains unclear. Here, we investigate this in mice expressing a doxycycline-inducible RNAi against Atg5 (Atg5i). Systemic autophagy inhibition in Atg5i mice resulted in the morphological and functional abrogation of the male accessory sex organs, leading to male subfertility. However, the testis was largely protected, likely due to the limited permeability of doxycycline through the blood-testis barrier. Interestingly, restoration of autophagy by doxycycline withdrawal in Atg5i mice led to substantial recovery of the phenotype in the accessory organs. This model offers a unique opportunity to dissect the pre- and post-testicular roles of autophagy, highlighting the non-autonomous impact of autophagy on male fertility

    A novel <i>Atg5</i>-shRNA mouse model enables temporal control of Autophagy <i>in vivo</i>

    No full text
    <p>Macroautophagy/autophagy is an evolutionarily conserved catabolic pathway whose modulation has been linked to diverse disease states, including age-associated disorders. Conventional and conditional whole-body knockout mouse models of key autophagy genes display perinatal death and lethal neurotoxicity, respectively, limiting their applications for <i>in vivo</i> studies. Here, we have developed an inducible shRNA mouse model targeting <i>Atg5</i>, allowing us to dynamically inhibit autophagy <i>in vivo</i>, termed ATG5i mice. The lack of brain-associated shRNA expression in this model circumvents the lethal phenotypes associated with complete autophagy knockouts. We show that ATG5i mice recapitulate many of the previously described phenotypes of tissue-specific knockouts. While restoration of autophagy in the liver rescues hepatomegaly and other pathologies associated with autophagy deficiency, this coincides with the development of hepatic fibrosis. These results highlight the need to consider the potential side effects of systemic anti-autophagy therapies.</p
    corecore