20 research outputs found

    Post-discharge health assessment in survivors of coronavirus disease: a time-point analysis of a prospective cohort study

    Get PDF
    © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.PURPOSE: The objective of this study was to quantitatively evaluate psychological and quality of life-related complications at three months following discharge in hospitalized coronavirus disease 2019 (COVID-19) patients during the pandemic in Iran. METHODS: In this time-point analysis of prospective cohort study data, adult patients hospitalized with symptoms suggestive of COVID-19 were enrolled. Patients were stratifed in analyses based on severity. The primary outcomes consisted of psychological problems and pulmonary function tests (PFTs) in the three months following discharge, with Health-related quality of life (HRQoL) as the secondary outcome. Exploratory predictors were determined for both primary and secondary outcomes. Results 283 out of 900 (30%) eligible patients were accessible for the follow-up assessment and included in the study. The mean age was 53.65±13.43 years, with 68% experiencing a severe disease course. At the time of the fnal follow-up, participants still reported persistent symptoms, among which fatigue, shortness of breath, and cough were the most common. Based on the regression-adjusted analysis, lower levels of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) ratio was associated with higher levels of depression (standardized ß=- 0.161 (SE=0.042), P=0.017) and stress levels (standardized ß=- 0.110 (SE=0.047), P=0.015). Furthermore, higher levels of anti-SARS-CoV-2 immunoglobulinM (IgM) were associated with signifcantly lower levels of depression (standardized ß=- 0.139 (SE=0.135), P=0.031). CONCLUSIONS: There is an association between lung damage during COVID-19 and the reduction of pulmonary function for up to three months from acute infection in hospitalized patients. Varying degrees of anxiety, depression, stress, and low HRQoL frequently occur in patients with COVID-19. More severe lung damage and lower COVID-19 antibodies were associated with lower levels of psychological health.Isfahan University of Medical Sciences, IR.MUI.MED.REC.1399.517, Ramin SamiPeer ReviewedPostprint (published version

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Effect of Grain Boundary Misorientation on Spall Strength in Ta via Shock-Free Simulations with Relatively Few Atoms

    No full text
    A suite of 37 molecular dynamics simulations is conducted at two system sizes to systematically characterize the role of grain boundary (GB) misorientation on spall strength in pure BCC tantalum (Ta). The systems studied consist of bicrystals with a single [110] symmetric tilt grain boundary. Two loading conditions are compared: (i) homogeneous extension under uniaxial strain simulated in this study and (ii) piston/flyer impact of sample, which induces heterogeneous deformation via shockwave propagation along the length of the sample. The piston/flyer impact is taken from the literature and run on the same set of GB misorientation angles using LAMMPS. The major finding here is that both methods result in similar spall strength predictions, but the homogeneous extension method generally requires two to three orders of magnitude fewer atoms and similar reductions in computational costs. Spall strength results systematically overpredict using this method, by about 10% for the dataset three orders of magnitude smaller than piston/flyer simulations, and 5% for the dataset two orders of magnitude smaller. Lastly, the effect of system size and pre-compression magnitude on spall strength is systematically characterized

    The plastic yield and flow behavior in metallic glasses

    No full text
    Metallic glasses have vast potential applications as components in microelectronics- and nanoelectronics-type devices. The design of such components through computer simulations requires the input of a faithful set of continuum-based constitutive equations. However, one long-standing controversial issue in modeling the plastic behavior of metallic glasses at the continuum level is the use of the most appropriate plastic yield criterion and flow rule. Guided by a series of molecular dynamics simulations conducted at low-homologous temperatures under homogeneous deformations, we quantitatively prove that the continuum plastic behavior in metallic glasses is most accurately described by a von Mises-type plastic yield criterion and flow rule

    A Modified Embedded Atom Method (MEAM) Interatomic Potential for the Fe-C-H System

    Full text link
    We develop an Fe-C-H interatomic potential based on the modified embedded-atom method (MEAM) formalism based on density functional theory to enable large-scale modular dynamics simulations of carbon steel and hydrogen

    Regenerative potential of multinucleated cells: bone marrow adiponectin-positive multinucleated cells take the lead

    No full text
    Abstract Background Polyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated. Methods BM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction. Results BM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma. Conclusions A population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction. Graphical Abstrac

    Surface roughness imparts tensile ductility to nanoscale metallic glasses

    No full text
    Experiments show an intriguing brittle-to-ductile transition on size reduction on nanoscale metallic glasses (MGs). Here we demonstrate that such phenomena is linked to a fundamental characteristic size effect in the failure mode under tensile loading. Large-scale molecular dynamics simulations reveal that nanoscaled MGs with atomistically smooth surfaces exhibit catastrophic failure via sharp, localized shear band propagation. In contrast, nanosized specimens with surface imperfections exhibit a clear transition from shear banding to necking instability above a critical roughness ratio of  ξ ∼ 1/20, defined as the ratio between the average surface imperfection size and sample diameter. The observed brittle-to-ductile transition that emerges in nanosized MGs deformed at room temperature can be strongly attributed to this roughness argument. In addition, the results suggest that the suppression of brittle failure may be scale-free and be realizable on length scales much beyond those considered here, provided the threshold roughness ratio is exceeded. The fundamental critical roughness ratio demonstrated sheds light on the complex mechanical behavior of amorphous metals and has implications for the application of MGs in nano- and micro-devices

    Identification of the Crucial Regulatory Elements Modulating the Host Respiratory Response to SARS-CoV-2 Using Motif Detection, A Systems Biology Approach

    No full text
    Introduction: SARS-CoV-2, as a major threat to human health and economy, has brought in uncertain consequences in the early decade of the 21st century. Since no antiviral therapy or effective vaccine against SARS-CoV-2 is currently available, deciphering the possible mechanisms by which the host responds to the virus seems critical, as it may affect the scientific community around the world toward the development of novel therapeutics. Here, we identified the key regulatory molecules modulating the host response to SARS-CoV-2 that affected the transcriptional profiles of respiratory infections in vitro. Materials and Methods: We used the data recently published on the effect of SARS-CoV-2 on two lung cell lines. We selected the shared differentially expressed genes (DEGs) between the two cell lines. To find the key regulatory molecules, we used transcription factors-miRNA-gene interaction databases and analyzed the data using the FANMOD software to detect the crucial regulatory motifs. Cytoscape was then applied to construct the network. We used the KEGG pathway and Gene Ontology (GO) enrichment analysis to predict the probable intermediating biochemical pathways and biological processes. Results: Our data demonstrated that four triangle-shaped (3edge) feed-forward loop motifs (FFLs) played significant roles, and the integrated FFLs subnetwork was constructed. STAT1, IRF9, IRF7, and PRK12 were the genes shared among them. The most important biological processes relating to the effect of the new virus were linked to response to cytokine, innate immune response, and adaptive immune response. Besides, significantly enriched pathways associated with other different viral infections included the nuclear factor κ-light-chain-enhancer of activated B cells (NF-kappa B) signaling pathway, the nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling pathway, and the Jak-STAT signaling pathway. Conclusion: Most of the pathways were related to the cytokines storm that may contribute to different levels of lung injury. These regulatory motifs shed light on the transcriptional signature of the respiratory cells and may be responsible for the development of COVID-19 or can also be used as a potential target for further drug therapies or vaccines
    corecore