2 research outputs found

    Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands

    Get PDF
    5-HT and 5-HT receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT receptor ligand culminating in the identification of several dual 5-HT and 5-HT receptor ligands. Compound , a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin

    Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands

    No full text
    5-HT(1A) and 5-HT(7) receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT(7) receptor ligand culminating in the identification of several dual 5-HT(1A) and 5-HT(7) receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin
    corecore