25 research outputs found
Molecular Biomonitoring of Microbial Communities in Tannery Wastewater Treatment Plant for the Removal of Retanning Chemicals
This chapter focuses on culture-independent characterization and monitoring of microbial communities in tannery wastewater treatment system, with special reference to the degradation of two xenobiotic chemicals used in retanning processes. Molecular survey of a tannery wastewater treatment system through metagenomic and metatranscriptomic approaches revealed a diverse microbial community in each component of the treatment system with high gene copies for enzymes involved in the degradation of cyclic aromatic compounds such as nitrotoluene. A combination of flow cytometry and molecular fingerprinting methods was used in a lab-scale reactor to monitor the dynamics of the microbes in the sludge and the fate of two retanning chemicals. The identified key microbial communities for the removal of the two xenobiotic chemicals belong to members of the group Proteobacteria and the phylum Bacteroidetes
Evaluating diagnostic accuracies of Panbio™ test and RT-PCR for the detection of SARS-CoV-2 in Addis Ababa, Ethiopia using Bayesian Latent-Class Models (BLCM)
Background: Rapid diagnostics are vital for curving the transmission and control of the COVID-19 pandemic. Although many commercially available antigen-based rapid diagnostic tests (Ag-RDTs) for the detection of SARS-CoV-2 are recommended by the WHO, their diagnostic performance has not yet been assessed in Ethiopia. So far, the vast majority of studies assessing diagnostic accuracies of rapid antigen tests considered RT-PCR as a reference standard, which inevitably leads to bias when RT-PCR is not 100% sensitive and specific. Thus, this study aimed to evaluate the diagnostic performance of Panbio™ jointly with the RT-PCR for the detection of SARS-CoV-2.
Methods: A prospective cross-sectional study was done from July to September 2021 in Addis Ababa, Ethiopia, during the third wave of the pandemic involving two health centers and two hospitals. Diagnostic sensitivity and specificity of Panbio™ and RT-PCR were obtained using Bayesian Latent-Class Models (BLCM).
Results: 438 COVID-19 presumptive clients were enrolled, 239 (54.6%) were females, of whom 196 (44.7%) had a positive RT-PCR and 158 (36.1%) were Panbio™ positive. The Panbio™ and RT-PCR had a sensitivity (95% CrI) of 99.6 (98.4-100) %, 89.3 (83.2-97.6) % and specificity (95% CrI) of 93.4 (82.3-100) %, and 99.1 (97.5-100) %, respectively. Most of the study participants, 318 (72.6%) exhibited COVID-19 symptoms; the most reported was cough 191 (43.6%).
Conclusion: As expected the RT-PCR performed very well with a near-perfect specificity and a high, but not perfect sensitivity. The diagnostic performance of Panbio™ is coherent with the WHO established criteria of having a sensitivity ≥80% for Ag-RDTs. Both tests displayed high diagnostic accuracies in patients with and without symptoms. Hence, we recommend the use of the Panbio™ for both symptomatic and asymptomatic individuals in clinical settings for screening purposes
Diagnostic accuracy of three commercially available one step RT-PCR assays for the detection of SARS-CoV-2 in resource limited settings
Background
COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting.
Methods
A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard.
Results
Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973–1.000), 0.961(0.930–0.991) and 0.916(0.875–0.952) and considerably lower sensitivities with 0.813(0.658–0.938), 0.836(0.712–0.940) and 0.810(0.687–0.920) for TIB MOLBIOL, Da An and BGI respectively were found.
Conclusions
While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Effect of low complexity regions within the PvMSP3 block II on the tertiary structure of the protein and implications to immune escape mechanisms
Ramachandran plot of predicted tertiary structure. (PNG 19 kb
Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.
A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2-) and S(2-), 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU)--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia
Pneumococcal colonization and coinfecting respiratory viruses in children under 5 years in Addis Ababa, Ethiopia: a prospective case–control study
Abstract A comprehensive understanding of the dynamics of Streptococcus pneumoniae colonization in conjunction with respiratory virus infections is essential for enhancing our knowledge of the pathogenesis and advancing the development of effective preventive strategies. Therefore, a case–control study was carried out in Addis Ababa, Ethiopia to investigate the colonization rate of S. pneumoniae and its coinfection dynamics with respiratory viruses among children under the age of 5 years. Samples from the nasopharyngeal and/or oropharyngeal, along with socio-demographic and clinical information, were collected from 420 children under 5 years old (210 cases with lower respiratory tract infections and 210 controls with conditions other than respiratory infections.). A one-step Multiplex real-time PCR using the Allplex Respiratory Panel Assays 1–4 was performed to identify respiratory viruses and bacteria. Data analysis was conducted using STATA software version 17. The overall colonization rate of S. pneumoniae in children aged less than 5 years was 51.2% (215/420). The colonization rates in cases and controls were 54.8% (115/210) and 47.6% (100/210), respectively (p = 0.14). Colonization rates were observed to commence at an early age in children, with a colonization rate of 48.9% and 52.7% among infants younger than 6 months controls and cases, respectively. The prevalence of AdV (OR, 3.11; 95% CI [1.31–8.19]), RSV B (OR, 2.53; 95% CI [1.01–6.78]) and HRV (OR, 1.7; 95% CI [1.04–2.78]) tends to be higher in children who tested positive for S. pneumoniae compared to those who tested negative for S. pneumoniae. Further longitudinal research is needed to understand and determine interaction mechanisms between pneumococci and viral pathogens and the clinical implications of this coinfection dynamics
Genus- level distribution of the different families of the dominant class Clostridia in the different components of the integrated reactor.
<p>Genus- level distribution of the different families of the dominant class Clostridia in the different components of the integrated reactor.</p
Estimated sample coverage, community richness and diversity estimators of the 16S rRNA gene clone libraries of Modjo Tannery effluent treatment plant samples.
<p>Abbreviations: N, Number of clones in each library; NS, Number of unique sequences for each library; S, richness expressed by number of observed OTUs; ESC, estimated sample coverage.</p><p>* Values in Parenthesis are 95% confidence intervals.</p><p>Estimated sample coverage, community richness and diversity estimators of the 16S rRNA gene clone libraries of Modjo Tannery effluent treatment plant samples.</p