280 research outputs found

    Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    Full text link
    We present a novel, detailed study on the usefulness of three-mode Gaussian states states for realistic processing of continuous-variable quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure -- based on passive optical elements -- to produce pure three-mode Gaussian states with {\em arbitrary} entanglement structure (upon availability of an initial two-mode squeezed state). We analyze in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with continuous variables. This will lead to a feasible experimental proposal to test the promiscuous sharing of continuous-variable tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with continuous variables beyond the bipartite scenario.Comment: 33 pages, 10 figures (some low-res due to size constraints), IOP style; (v2) improved and reorganized, accepted for publication in New Journal of Physic

    Theory of ground state factorization in quantum cooperative systems

    Full text link
    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows to determine rigorously existence, location, and exact form of separable ground states in a large variety of, generally non-exactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.Comment: 4 pages, 1 figur

    Harmonics of the AC susceptibility as probes to differentiate the various creep models

    Full text link
    We measured the temperature dependence of the 1st and the 3rd harmonics of the AC magnetic susceptibility on some type II superconducting samples at different AC field amplitudes, hAC. In order to interpret the measurements, we computed the harmonics of the AC susceptibility as function of the temperature T, by integrating the non-linear diffusion equation for the magnetic field with different creep models, namely the vortex glass-collective creep (single-vortex, small bundle and large bundle) and Kim-Anderson model. We also computed them by using a non-linear phenomenological I-V characteristics, including a power law dependence of the pinning potential on hAC. Our experimental results were compared with the numerically computed ones, by the analysis of the Cole-Cole plots. This method results more sensitive than the separate component analysis, giving the possibility to obtain detailed information about the contribution of the flux dynamic regimes in the magnetic response of the analysed samples.Comment: 9 pages, 6 figures, submitted to Physica

    Controllable Gaussian-qubit interface for extremal quantum state engineering

    Full text link
    We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.Comment: 4+3 pages, 6 figures, RevTeX4. Close to published version with appendi

    Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Full text link
    For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric NN--mode Gaussian states, for arbitrary NN. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the WW states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.Comment: 13 pages, 1 figure. Replaced with published versio

    Entanglement quantification by local unitaries

    Full text link
    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the "stellar mirror entanglement" associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.Comment: 13 pages, 3 figures. Improved and generalized proof of monotonicity of the mirror and stellar entanglemen

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure

    Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence

    Full text link
    We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. This will lead us to show that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/WW states of continuous variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the WW states of three qubits. We finally consider the action of decoherence on tripartite entangled Gaussian states, studying the decay of the residual contangle. The GHZ/WW states are shown to be maximally robust under both losses and thermal noise.Comment: 20 pages, 5 figures. (v2) References updated, published versio

    Composite Cluster States and Alternative Architectures for One- Way Quantum Computation

    Full text link
    We propose a new architecture for the measurement-based quantum computation model. The new design relies on small composite light-atom primary clusters. These are then assembled into cluster arrays using ancillary light modes and the actual computation is run on such a cellular cluster. We show how to create the primary clusters, which are Gaussian cluster states composed of both light and atomic modes. These are entangled via QND interactions and beamsplitters and the scheme is well described within the continuous-variable covariance matrix formalism.Comment: arXiv admin note: text overlap with arXiv:1007.040

    A new method to detect the vortex glass phase and its evidence in YBCO

    Full text link
    The Vortex Glass phase has been unequivocally identified by analyzing the non linear magnetic response of type II superconductors. The method here introduced, more effective than the study of direct transport measurements, is based on a combined frequency dependence analysis of the real and imaginary part of the 1st and 3rd harmonics of the AC magnetic susceptibility. The analysis has been performed by taking into account both the components and the Cole-Cole plots (i.e. the imaginary part as a function of the real part). Numerical simulations have been used to individuate the fingerprints of the magnetic behaviour in the Vortex Glass phase. These characteristics allowed to distinguish the Vortex Glass phase from the other disordered phases, even those showing similar electrical properties. Finally, this method has been successfully applied to detect the Vortex Glass Phase in an YBCO bulk melt-textured sample.Comment: 15 pages, 12 figure
    corecore