43 research outputs found

    Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations

    Get PDF
    In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates

    Determination of neo- and d-chiro-Inositol Hexakisphosphate in Soils by Solution 31P NMR Spectroscopy

    Get PDF
    The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP6) occur, although for three of these (scyllo, flea, and D-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and n-chiro-IP6 and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable P-31 NMR signals at delta = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP6) and delta = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of D-chiro-IP6) in soil extracts. Inositol hexakisphosphate accounted for 46-54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (n-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and D-chiro-IP6 occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and D-chiro-IP6 in the environment. The hypobromite oxidation and solution P-31 NMR spectroscopy procedure allows the simultaneous quantification of all four IP6 stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds

    Size-dependent luminescence of small palladium particles

    No full text
    We report cathodoluminescence spectra of small Pd clusters of various size deposited on a thin, well-ordered oxide film. The size distribution of the deposited metal aggregates can be chosen and deliberately varied. The luminescence spectra vary characteristically as a function of the variation of particle size. The resonance energy at the highest luminescence energy with decreasing average particle size vary as expected for electronic states in a quantum confined metal particle. For an average aggregate size of 10 Å the luminescence is maximum

    Results of a prospective, randomized multi-center study with 2-year follow-up to compare the performance of decompression with and without interlaminar stabilization

    No full text
    OBJECTIVESurgical decompression is extremely effective in relieving pain and symptoms due to lumbar spinal stenosis (LSS). Decompression with interlaminar stabilization (D+ILS) is as effective as decompression with posterolateral fusion for stenosis, as shown in a major US FDA pivotal trial. This study reports a multicenter, randomized controlled trial in which D+ILS was compared with decompression alone (DA) for treatment of moderate to severe LSS.METHODSUnder approved institutional ethics review, 230 patients (1:1 ratio) randomized to either DA or D+ILS (coflex, Paradigm Spine) were treated at 7 sites in Germany. Patients had moderate to severe LSS at 1 or 2 adjacent segments from L-3 to L-5. Outcomes were evaluated up to 2 years postoperatively, including Oswestry Disability Index (ODI) scores, the presence of secondary surgery or lumbar injections, neurological status, and the presence of device- or procedure-related severe adverse events. The composite clinical success (CCS) was defined as combining all 4 of these outcomes, a success definition validated in a US FDA pivotal trial. Additional secondary end points included visual analog scale (VAS) scores, Zürich Claudication Questionnaire (ZCQ) scores, narcotic usage, walking tolerance, and radiographs.RESULTSThe overall follow-up rate was 91% at 2 years. There were no significant differences in patient-reported outcomes at 24 months (p &gt; 0.05). The CCS was superior for the D+ILS arm (p = 0.017). The risk of secondary intervention was 1.75 times higher among patients in the DA group than among those in the D+ILS group (p = 0.055). The DA arm had 228% more lumbar injections (4.5% for D+ILS vs 14.8% for DA; p = 0.0065) than the D+ILS one. Patients who underwent DA had a numerically higher rate of narcotic use at every time point postsurgically (16.7% for D+ILS vs 23% for DA at 24 months). Walking Distance Test results were statistically significantly different from baseline; the D+ILS group had &gt; 2 times the improvement of the DA. The patients who underwent D+ILS had &gt; 5 times the improvement from baseline compared with only 2 times the improvement from baseline for the DA group. Foraminal height and disc height were largely maintained in patients who underwent D+ILS, whereas patients treated with DA showed a significant decrease at 24 months postoperatively (p &lt; 0.001).CONCLUSIONSThis study showed no significant difference in the individual patient-reported outcomes (e.g., ODI, VAS, ZCQ) between the treatments when viewed in isolation. The CCS (survivorship, ODI success, absence of neurological deterioration or device- or procedure-related severe adverse events) is statistically superior for ILS. Microsurgical D+ILS increases walking distance, decreases compensatory pain management, and maintains radiographic foraminal height, extending the durability and sustainability of a decompression procedure.Clinical trial registration no.: NCT01316211 (clinicaltrials.gov)</jats:sec

    Morphological changes of silica shells deposited on gold nanorods : implications for nanoscale photocatalysts

    No full text
    Gold nanorods (GNRs) support strong localized surface plasmon resonances that can be exploited to enhance the fluorescence or catalytic properties of adjacent molecules. Coating GNRs with silica is frequently used to functionalize their surfaces, but full encapsulation limits the ability to control the spatial distribution of molecules and their related reactivity. For example, locating molecules near the ends of GNRs would enable their strong longitudinal plasmon resonance to be exploited, but such selectivity is challenging. So far, studies of anisotropic coating have been limited and the mechanism of the adsorption onto GNRs remains unclear. Here, we systematically investigated the anisotropic coating of the ends of GNRs with silica and the influence of growth conditions on the formation of silica shells. Three types of nanostructures have been observed and their origins are described: fully encapsulated core-shell GNRs, GNRs with only one end coated with silica, and dumbbell-like GNRs (dGNRs) with both ends coated. The study was performed at around room temperature, where the solubility and micellization of the surfactant cetyltrimethylammonium bromide (CTAB) can be tuned to affect the morphology, stability and density of resulting silica shells. Optimized parameters, in combination with an appropriate GNR aspect ratio, are shown to significantly improve the growth yield of dGNRs, which become the dominant product. A protocol for a high yield synthesis of dGNRs was developed, with a maximum yield exceeding 90 %. This study advances our understanding of the growth mechanism of anisotropic coating of GNRs and sheds light on the optimization of site-selective coating processes. The development of anisotropic GNR-based nanostructures for fluorescence/scattering amplifiers will be important in applications such as metal-enhanced fluorescence, surface-enhanced Raman scattering or plasmon-enhanced catalysis

    Structural Investigation of Palladium Clusters on γ-AlO<sub>3</sub>(111)/NiAl(110) with Transmission Electron Microscopy

    No full text
    For Pd clusters on γ-Al2O3 epitaxially grown on NiAl(110) the lattice constant has been determined as a function of the cluster size by evaluating patterns induced by double diffraction involving the NiAl substrate and the cluster lattice. Similar to results reported previously for platinum and tantalum clusters on the same substrate (Surf. Sci.1997, 391, 27; Surf. Sci.1998, 413, 192), we observe a reduction of the distances within the lattice with decreasing cluster size. The highest observed reduction is 5% for clusters with a diameter of about 12 Å. Within the limits of the experimental errors the reduction of the lattice distances is isotropic. Although the samples have been exposed to air prior to investigation, the clusters are only weakly oxidized as concluded from XPS data

    Durch Online-Training gut vorbereitet! Der digitale Famulatur-Vorbereitungskurs des AIXTRA

    No full text

    Interprofessionelles Führungskräftetraining mit Simulationspersonen in der Aachener Peer Group Academy

    No full text
    corecore