80 research outputs found

    Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia

    Get PDF
    Purpose: Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Methods: Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Results: Two heterozygous variants of unknown significance (c.128C > G [p.Pro43Arg]; c.776C > A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C > A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C > G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Conclusions: Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia

    Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration

    Get PDF
    Climate change is already affecting agro-ecosystems and threatening food security by reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa. We analyze the genomic diversity of 173 landraces collected in West Africa together with an extensive climate dataset composed of metrics of agronomic importance. Mapping the pearl millet genomic vulnerability at the 2050 horizon based on the current genomic-climate relationships, we identify the northern edge of the current areas of cultivation of both early and late flowering varieties as being the most vulnerable to climate change. We predict that the most vulnerable areas will benefit from using landraces that already grow in equivalent climate conditions today. However, such seed-exchange scenarios will require long distance and trans-frontier assisted migrations. Leveraging genetic diversity as a climate mitigation strategy in West Africa will thus require regional collaboration

    Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation

    Get PDF
    Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions. Gene flow, from either the same species or a different species, may be an immediate primary source to widen genetic diversity and adaptions to various environments. When the incorporation of a foreign variant leads to an increase of the fitness of the recipient pool, it is referred to as “adaptive introgression”. Crop species are excellent case studies of this phenomenon since their genetic variability has been considerably reduced over space and time but most of them continue exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive introgression, presenting methodological approaches and challenges to detecting it. We pay particular attention to the potential of this evolutionary mechanism for the adaptation of crops. Furthermore, we discuss the importance of farmers’ knowledge and practices in shaping wild-to-crop gene flow. Finally, we argue that screening the wild introgression already existing in the cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop adaptation to current environmental changes and for informing new breeding directions

    New Genetic Insights into Pearl Millet Diversity As Revealed by Characterization of Early- and Late-Flowering Landraces from Senegal

    Get PDF
    Pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food and a drought-tolerant cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity of pearl millet landraces has been widely conserved by farmers and therefore could help copping with climate changes and contribute to future food security. Hence, characterizing its genetic diversity and population structure can contribute to better assist breeding programs for a sustainable agricultural productivity enhancement. Toward this goal, a comprehensive panel of 404 accessions were used that correspond to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces from Senegal. Twelve highly polymorphic SSR markers were used to study diversity and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to assess their association to flowering phenotypic difference in landraces. Results indicate a large diversity and untapped potential of Senegalese pearl millet germplasm as well as a genetic differentiation between early- and late-flowering landraces. Further, a fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively) and co-variation of their alleles with flowering time were found among landraces. These findings highlight new genetic insights of pearl millet useful to define heterotic populations for breeding, genomic association panel, or crosses for trait-specific mapping

    A Set of 100 Chloroplast DNA Primer Pairs to Study Population Genetics and Phylogeny in Monocotyledons

    Get PDF
    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted Repeat region (IR). Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae), Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae), Digitaria excilis and Pennisetum glaucum (Poaceae). The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP) while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR). We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA) are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies

    Génétique des anophtalmies et microphtalmies

    No full text
    Les microphtalmies et les anophtalmies (réduction et absence du globe oculaire) sont les malformations oculaires les plus sévères. Leur incidence est estimée à 1,5/10 000 naissances. Des mutations de gènes impliqués dans l'embryogenèse oculaire, (SOX2, OTX2, RAX, CHX10 et STRA6) ont été associées à ces malformations. Nous avons analysé une cohorte de 81 patients anophtalmes (24) ou microphtalmes (57), à la recherche de mutations dans ces gènes et avons identifié des mutations chez 21 % (17/81) d'entre eux. Nos résultat nous permettent une meilleure définition des phénotypes oculaires et extraoculaires associés à chaque gène. Nous avons pu également déterminer pour chacun d'eux la fréquence de leur implication dans les ano/microphtalmies et ainsi définir une stratégie de diagnostic moléculaire pour ces pathologies. L'identification de l'anomalie moléculaire causale est importante pour une prise en charge adaptée du patient et la possibilité d'un conseil génétique précis pour sa famille.TOULOUSE3-BU Santé-Centrale (315552105) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
    corecore