56 research outputs found

    Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge

    Get PDF
    Nutritional genomics has exploded in the last decade, yielding insights—both nutrigenomic and nutrigenetic—into the physiology of dietary interactions and our genes. Among these are insights into the regulation of magnesium transport and homeostasis and mechanisms underlying magnesium’s role in insulin and glucose handling. Recent observational evidence has attempted to examine some promising research avenues on interaction between genetics and dietary magnesium in relation to diabetes and diabetes risk factors. This brief review summarizes the recent evidence on dietary magnesium’s role in diabetes and related traits in the presence of underlying genetic risk, and discusses future potential research directions

    Serum Magnesium Concentrations and All-cause, Cardiovascular, and Cancer Mortality among U.S. Adults: Results from The NHANES I Epidemiologic Follow-up Study

    Get PDF
    Background Few studies have examined the associations of serum magnesium (Mg) concentrations with total and cause-specific mortality in a nationally representative sample of US adults. We investigate the dose–response relationships of baseline serum Mg concentrations with risk of mortalities in a large, nationally representative sample of US adults. Methods We analyzed prospective data of 14,353 participants aged 25–74 years with measures of serum Mg concentrations at baseline (1971–1975) from the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study (NHEFS). Mortality data was linked through December 31, 2011. We estimated the mortality hazard ratios (HRs), for participants within serum Mg categories of <0.7, 0.7–0.74, 0.75–0.79, 0.8–0.89 (referent), 0.9–0.94, 0.95–0.99, and ≥1.0 mmol/L using weighted multivariate-adjusted Cox proportional hazards models. Results During a median follow-up of 28.6 years, 9012 deaths occurred, including 3959 CVD deaths, 1923 cancer deaths, and 708 stroke deaths. The multivariate-adjusted HRs (95% CIs) of all-cause mortality across increasing categories of Mg were 1.34 (1.02, 1.77), 0.94 (0.75, 1.18), 1.08 (0.97, 1.19), 1.00 (referent), 1.05 (0.95, 1.16), 0.96 (0.79, 1.15), and 0.98 (0.76, 1.26). Similar trends were observed for cancer (HRs for serum Mg < 0.7: 1.39, 95% CI: 0.83, 2.32) and CVD mortality (HRs for serum Mg < 0.7: 1.28, 95% CI: 0.81, 2.02) but were not statistically significant. An elevated risk for stroke mortality was observed among participants with serum Mg < 0.70 mmol/L (HR: 2.55, 95% CI: 1.18, 5.48). Conclusions Very low serum Mg concentrations were significantly associated with an increased risk of all-cause mortality in US adults

    The Circulating Concentration and 24-h Urine Excretion of Magnesium Dose- and Time-Dependently Respond to Oral Magnesium Supplementation in a Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: Accurate determination of Mg status is important for improving nutritional assessment and clinical risk stratification. Objective: We aimed to quantify the overall responsiveness of Mg biomarkers to oral Mg supplementation among adults without severe diseases and their dose- and time responses using available data from randomized controlled trials (RCTs). Methods: We identified 48 Mg supplementation trials (n = 2131) through searches of MEDLINE and the Cochrane Library up to November 2014. Random-effects meta-analysis was used to estimate weighted mean differences of biomarker concentrations between intervention and placebo groups. Restricted cubic splines were used to determine the dose- and time responses of Mg biomarkers to supplementation. Results: Among the 35 biomarkers assessed, serum, plasma, and urine Mg were most commonly measured. Elemental Mg supplementation doses ranged from 197 to 994 mg/d. Trials ranged from 3 wk to 5 y (median: 12 wk). Mg supplementation significantly elevated circulating Mg by 0.04 mmol/L (95% CI: 0.02, 0.06) and 24-h urine Mg excretion by 1.52 mmol/24 h (95% CI: 1.20, 1.83) as compared to placebo. Circulating Mg concentrations and 24-h urine Mg excretion responded to Mg supplementation in a dose- and time-dependent manner, gradually reaching a steady state at doses of 300 mg/d and 400 mg/d, or after ~20 wk and 40 wk, respectively (all P-nonlinearity ≤ 0.001). The higher the circulating Mg concentration at baseline, the lower the responsiveness of circulating Mg to supplementation, and the higher the urinary excretion (all P-linearity < 0.05). In addition, RBC Mg, fecal Mg, and urine calcium were significantly more elevated by Mg supplementation than by placebo (all P-values < 0.05), but there is insufficient evidence to determine their responses to increasing Mg doses. Conclusions: This meta-analysis of RCTs demonstrated significant dose- and time responses of circulating Mg concentration and 24-h urine Mg excretion to oral Mg supplementation

    Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease A Prospective Cohort Study

    Get PDF
    AbstractBackgroundThe associations between dietary saturated fats and the risk of coronary heart disease (CHD) remain controversial, but few studies have compared saturated with unsaturated fats and sources of carbohydrates in relation to CHD risk.ObjectivesThis study sought to investigate associations of saturated fats compared with unsaturated fats and different sources of carbohydrates in relation to CHD risk.MethodsWe followed 84,628 women (Nurses’ Health Study, 1980 to 2010), and 42,908 men (Health Professionals Follow-up Study, 1986 to 2010) who were free of diabetes, cardiovascular disease, and cancer at baseline. Diet was assessed by a semiquantitative food frequency questionnaire every 4 years.ResultsDuring 24 to 30 years of follow-up, we documented 7,667 incident cases of CHD. Higher intakes of polyunsaturated fatty acids (PUFAs) and carbohydrates from whole grains were significantly associated with a lower risk of CHD comparing the highest with lowest quintile for PUFAs (hazard ratio [HR]: 0.80, 95% confidence interval [CI]: 0.73 to 0.88; p trend <0.0001) and for carbohydrates from whole grains (HR: 0.90, 95% CI: 0.83 to 0.98; p trend = 0.003). In contrast, carbohydrates from refined starches/added sugars were positively associated with a risk of CHD (HR: 1.10, 95% CI: 1.00 to 1.21; p trend = 0.04). Replacing 5% of energy intake from saturated fats with equivalent energy intake from PUFAs, monounsaturated fatty acids, or carbohydrates from whole grains was associated with a 25%, 15%, and 9% lower risk of CHD, respectively (PUFAs, HR: 0.75, 95% CI: 0.67 to 0.84; p < 0.0001; monounsaturated fatty acids, HR: 0.85, 95% CI: 0.74 to 0.97; p = 0.02; carbohydrates from whole grains, HR: 0.91, 95% CI: 0.85 to 0.98; p = 0.01). Replacing saturated fats with carbohydrates from refined starches/added sugars was not significantly associated with CHD risk (p > 0.10).ConclusionsOur findings indicate that unsaturated fats, especially PUFAs, and/or high-quality carbohydrates can be used to replace saturated fats to reduce CHD risk

    Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits

    Get PDF
    OBJECTIVE Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, NR1D1-rs2314339) and cardiometabolic traits (fasting glucose [FG], HOMA-insulin resistance, BMI, waist circumference, and HDL-cholesterol) to facilitate personalized recommendations. RESEARCH DESIGN AND METHODS We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations and interactions between dietary intake/sleep duration and selected variants on cardiometabolic traits from 15 cohort studies including up to 28,190 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. RESULTS We observed significant associations between relative macronutrient intakes and glycemic traits and short sleep duration (<7 h) and higher FG and replicated known MTNR1B associations with glycemic traits. No interactions were evident after accounting for multiple comparisons. However, we observed nominally significant interactions (all P < 0.01) between carbohydrate intake and MTNR1B-rs1387153 for FG with a 0.003 mmol/L higher FG with each additional 1% carbohydrate intake in the presence of the T allele, between sleep duration and CRY2-rs11605924 for HDL-cholesterol with a 0.010 mmol/L higher HDL-cholesterol with each additional hour of sleep in the presence of the A allele, and between long sleep duration (≥9 h) and MTNR1B-rs1387153 for BMI with a 0.60 kg/m2 higher BMI with long sleep duration in the presence of the T allele relative to normal sleep duration (≥7 to <9 h). CONCLUSIONS Our results suggest that lower carbohydrate intake and normal sleep duration may ameliorate cardiometabolic abnormalities conferred by common circadian-related genetic variants. Until further mechanistic examination of the nominally significant interactions is conducted, recommendations applicable to the general population regarding diet—specifically higher carbohydrate and lower fat composition—and normal sleep duration should continue to be emphasized among individuals with the investigated circadian-related gene variants

    Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE consortium studies 1-4

    Get PDF
    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = −0.009 mmol/L (95% CI: −0.013, −0.005), P < 0.0001] and insulin [−0.020 ln-pmol/L (95% CI: −0.024, −0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted

    Self-reported health behaviors, including sleep, correlate with doctor-informed medical conditions: data from the 2011 Health Related Behaviors Survey of U.S. Active Duty Military Personnel

    No full text
    Abstract Background Health behaviors and cardiometabolic disease risk factors may differ between military and civilian populations; therefore, in U.S. active duty military personnel, we assessed relationships between demographic characteristics, self-reported health behaviors, and doctor-informed medical conditions. Methods Data were self-reported by 27,034 active duty military and Coast Guard personnel who responded to the 2011 Department of Defense Health Related Behaviors Survey. Multivariate linear and logistic regressions were used to estimate cross-sectional associations between (1) demographic characteristics (age, sex, service branch, marital status, children, race/ethnicity, pay grade) and self-reported behaviors (exercise, diet, smoking, alcohol, sleep); (2) demographic characteristics and doctor-informed medical conditions (hypertension, hypercholesterolemia, low high density lipoprotein (HDL) cholesterol, hyperglycemia) and overweight/obesity; and (3) behaviors and doctor-informed medical conditions. Results Among respondents (age 29.9 ± 0.1 years, 14.7% female), females reported higher intake than men of fruit, vegetables, and dairy; those with higher education reported higher intakes of whole grains; those currently married and/or residing with children reported higher intake of starches. Older age and female sex were associated with higher odds (ORs 1.25 to 12.54 versus the youngest age group) of overweight/obesity. Older age and female sex were also associated with lower odds (ORs 0.29 to 0.65 versus male sex) of doctor-informed medical conditions, except for blood glucose, for which females had higher odds. Those currently married had higher odds of high cholesterol and overweight/obesity, and separated/divorced/widowed respondents had higher odds of high blood pressure and high cholesterol. Short sleep duration (< 5 versus 7–8 h/night) was associated with higher odds (ORs 1.36to 2.22) of any given doctor-informed medical condition. Strength training was associated with lower probability of high cholesterol, high triglycerides, and low HDL, and higher probability of overweight/obesity. Dietary factors were variably associated with doctor-informed medical conditions and overweight/obesity. Conclusions This study observed pronounced associations between health behaviors—especially sleep—and medical conditions, thus adding to evidence that sleep is a critical, potentially modifiable behavior within this population. When possible, adequate sleep should continue to be promoted as an important part of overall health and wellness throughout the military community

    Additional file 1: of Self-reported health behaviors, including sleep, correlate with doctor-informed medical conditions: data from the 2011 Health Related Behaviors Survey of U.S. Active Duty Military Personnel

    No full text
    Table S1. Unweighted, unadjusted characteristics of respondents who were included vs. excluded in the present analysis, from the 2011 Health Related Behaviors Survey. Table S2. Factors and factor loadings of 17 health behaviors derived from principal components analysis with varimax rotation. Table S3. Odds ratios (95% CI) of medical conditions by sociodemographic characteristics. Table S4. Description of Data: Odds ratios (95% CI) of medical conditions by health behaviors. (DOCX 50 kb
    corecore