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Abstract: Nutritional genomics has exploded in the last decade, yielding insights—both 

nutrigenomic and nutrigenetic—into the physiology of dietary interactions and our genes. 

Among these are insights into the regulation of magnesium transport and homeostasis  

and mechanisms underlying magnesium’s role in insulin and glucose handling. Recent 

observational evidence has attempted to examine some promising research avenues on 

interaction between genetics and dietary magnesium in relation to diabetes and diabetes 

risk factors. This brief review summarizes the recent evidence on dietary magnesium’s role 

in diabetes and related traits in the presence of underlying genetic risk, and discusses future 

potential research directions. 

Keywords: magnesium; diet; genetic interaction; genome-wide interaction study; diabetes; 

glucose; insulin 
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1. Introduction 

The insights of the last decade into the genetics of type 2 diabetes and impaired glucose and insulin 

metabolism have yielded dozens of replicated risk loci. The genome-wide association (GWA) era has 

uncovered additional and novel genetic associations with disease risk that were beyond the purview of 

the previous genetic era’s linkage or candidate gene studies. However, researchers are now more than 

aware that GWA and prior approaches have their limitations and, moreover, that our current 

understanding of the contributions of genetics to complex and multifactorial diseases such as type 2 

diabetes must steadily move into ever greater complexity to include gene-gene/gene-environment 

interactions, epigenetics, whole exome/genome approaches, and beyond. 

Among the moves into complexity are investigations in gene-diet interactions, in which diet is 

considered a form of environmental exposure. A now classic example of a gene-diet interaction study 

was the reanalysis of the Diabetes Prevention Program data, which assessed the effect of a healthy diet 

versus metformin on diabetes risk in those at risk, in the context of a well-known single nucleotide 

polymorphism (SNP) at TCF7L2 (rs7903146) [1]. The results of this re-analysis clearly demonstrated 

elevated genetic risk at this locus with the TT genotype, but additionally demonstrated that lifestyle 

changes offset the genetic risk almost entirely. Hundreds, perhaps thousands, of so-called candidate 

SNP-diet interaction studies have been undertaken, and studies of micronutrient-gene interactions are 

no exception. Among these micronutrients is, of course, magnesium. 

Observational studies and clinical trials have shown that dietary magnesium has relatively 

consistent beneficial associations with type 2 diabetes and related traits [2,3] or sequelae, from insulin 

resistance and metabolic syndrome [4], to cardiovascular disease [5]. Coupled to the decade’s findings 

on the genetics of diabetes are novel findings related to the genetics of magnesium transport and 

homeostasis, which have provided even more fertile ground for investigating interactions between 

magnesium and risk of developing diabetes and effects on related phenotypes. 

Recently, a handful of investigations have delved into possible genetic interactions between 

magnesium intake and loci that may be responsible for impaired magnesium metabolism and 

homeostasis, or impaired glucose and insulin metabolism. These studies have turned up promising and 

not-so promising research avenues regarding interactions between genetics and dietary magnesium in 

relation to diabetes and diabetes risk factors. 

In this brief review, we summarize the underlying mechanisms thought to drive magnesium’s role 

in insulin and glucose homeostasis and metabolism, the epidemiologic evidence to date on dietary 

magnesium in relation to diabetes and related traits, and some recent evidence on magnesium’s role in 

diabetes in the presence of underlying genetic risk. This review ends with a discussion of research 

needs and future directions in the magnesium field. 

2. Basics of Magnesium Homeostasis 

Magnesium homeostasis is tightly regulated and serum levels are roughly constant across a wide 

range of magnesium intake [6]. Serum levels, perhaps because of their clinical measurement 

universality, dictate diagnoses of hypo- and hypermagnesaemia. However, dietary magnesium 

correlates with serum magnesium only weakly [7,8]. Age-, sex-, and energy-adjusted correlations of 
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0.27 including supplement users, and just 0.15 excluding supplement users, have been reported [7], 

while others have reported no linear association (r = 0.05) between self-reported dietary intake of 

magnesium and levels in serum [8]. Depletion studies [9,10] and supplementation trials [11,12] show 

that serum magnesium concentrations change slowly, over periods of up to four months from depletion 

before they stabilize or before the onset of adverse events such as heart arrhythmias or impaired 

reflexes [10]. Since serum magnesium is not particularly sensitive to intake, except in cases of 

prolonged deficiency or acute or prolonged hyperalimentation (often drug—e.g., milk of magnesia—or 

supplement-induced) it is considered a poor marker of dietary magnesium intake. Serum concentrations 

may therefore not accurately reflect total body magnesium stores, and by the time magnesium 

deficiency is clinically recognized based on serum concentrations (usually <0.75 mmol/L [6]),  

an individual’s deficiency may already be moderate to severe [13]. As such, some experts have 

emphasized the problem of chronic latent magnesium deficiency, which may contribute to the 

incidence of or exacerbate conditions such as type 2 diabetes and related metabolic disorders, as well 

as cardiovascular disease and osteoporosis [13,14]. 

The kidney is the main site of magnesium regulation; magnesium excretion decreases rapidly in 

response to decreased intake, long before blood concentrations levels fall below the normal range [15]. 

It follows that any disruption of normal function of the kidneys, or in the presence of renal disease, 

magnesium homeostasis is also generally impaired. Individuals at specific risk for magnesium 

deficiency include those with inadequate diets or nutritional supplementation, gastrointestinal disorders 

with malabsorption, endocrine and metabolic disorders (i.e., type 2 diabetes, hyperparathyroidism, 

hypoparathyroidism), primary aldosteronism, hungry bone syndrome, as well as those with conditions 

accompanied by diarrhea or excessive urinary magnesium losses or other renal dysfunction [13,15]. 

Certain medications, notably proton-pump inhibitors, have also been reported to induce 

hypomagnesaemia [16]. 

3. Magnesium and Its Putative Mechanisms in Glucose and Insulin Metabolism 

Impaired glucose and insulin metabolism lie along the etiologic trajectory that results in type 2 

diabetes [17]. While the exact mechanism of magnesium’s role in these processes remains to be 

elucidated, experimental evidence points to a role for magnesium in both beta-cell dysfunction and in 

insulin resistance in peripheral tissues. The evidence and hypotheses are briefly summarized below, 

but readers are referred to the excellent reviews by Günther [18], Bo and Pisu [19], Volpe [4], and 

Barbagallo and Dominguez [20]. 

One mechanism through which magnesium may be acting within peripheral tissue is via its effect 

on tyrosine kinase, a component of the beta subunit of the insulin receptor for which magnesium is  

a co-factor. Activation of tyrosine kinase produces a signaling cascade that ultimately translocates 

GLUT4 (the major insulin-regulated glucose transporter expressed in muscle and other insulin-responsive 

tissues) to the membrane, and allows the cell to take up glucose. Suarez et al. [21] reported that 

alongside a 50% reduction in the insulin sensitivity in rats fed a magnesium-deficient diet, there was 

also 50% reduced autophosphorylation of the beta subunit of the insulin receptor in isolated 

gastrocnemius muscle tissue of these rats as compared to controls, and that the tyrosine kinase activity 

of insulin receptors in these hypomagnesaemic animals was also significantly reduced. In another 
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study, rat epidydmal adipocytes exposed to regular or reduced ambient and intracellular free 

magnesium ion concentrations showed significantly reduced insulin-stimulated (but not basal) glucose 

oxidation to carbon dioxide when cultured in low versus physiologic magnesium. The authors 

concluded that their study provides evidence for magnesium’s role distal to glucose entry into the cell, 

and further, that impaired glucose oxidation may be reversible [22]. 

Insulin itself may be a regulatory hormone of magnesium metabolism. The mechanism whereby 

insulin modifies intracellular magnesium is via the activity of ion transport channels, such as  

Na/H antiporters, calcium-adenosine triphosphatases (Ca-ATPases), and ATPase-dependent pumps. 

Interestingly, insulin-mediated cellular uptake of magnesium may additionally depend on the 

activation of the tyrosine kinase of the insulin receptor, as there is evidence that inhibiting the receptor 

via monoclonal antibody nullifies insulin’s intracellular magnesium-raising effects [20] (notably,  

low intracellular magnesium does not affect insulin-insulin receptor binding, additionally pointing to  

a downstream (i.e., tyrosine kinase activation) regulatory focal point [18]). In addition, prolonged high 

concentrations of circulating insulin, such as those known to occur in insulin resistance, induce 

increases in renal magnesium excretion, thus perpetuating a deleterious cycle [18]. Barbagallo and 

Dominguez [20] have examined the relationship between basal intracellular magnesium levels and 

responsiveness of cells to both insulin and glucose: with lower basal intracellular magnesium 

concentrations, cells become less responsive to insulin and glucose. Further, they noted that while 

higher glucose induces magnesium efflux, the lower the basal concentration of magnesium, the less 

that concentration is responsive to the modifying effects of insulin and glucose—that is, there is  

a non-linear response and it appears the cells must retain some basal level of magnesium at which they 

are not as responsive to fluctuations in insulin or glucose. The authors postulate that hyperglycemia 

induces cellular hypomagnesaemia, which subsequently contributes to the inability of the cell to 

respond to insulin [20]. It should be noted that the effects of glucose and insulin on intracellular 

magnesium may not be universal, that is tissue-specific investigations in, for example, heart muscle or 

erythrocytes, may not be observed in other cells, such as pancreatic islets. 

While the exact mechanisms of magnesium’s direct and indirect effects on insulin production and 

secretion are unknown, several pathways are hypothesized. First, magnesium’s direct role as a cofactor 

for ATPases affects many steps of the glycolytic pathway. Second, magnesium may be acting as  

an inhibitor of the inositol 1,4,5-triphosphate (IP3)-gated calcium channel—thus magnesium may be 

acting as a calcium antagonist [23]. Relatedly, it has been suggested that the calcium-magnesium ratio 

within cells may be a more powerful regulator of insulin secretion, and that inhibitors and/or 

potentiators of ion balance or channel activity ultimately regulate insulin secretion [24,25]. A third 

proposed pathway of magnesium’s actions is via its role in the activation of acetyl-coA carboxylase, 

which ultimately catalyzes the formation of long-chain fatty acids, which have a role in insulin 

secretion. For example, in rat islet cells, acetyl-coA carboxylase activity is associated with magnesium 

in a dose-dependent manner [26]. A fourth mechanism may be related to genomic regulation of 

transcription. In obese Zucker fatty rats (spontaneous type 2 diabetes animals) fed a magnesium-

supplemented diet for 6 weeks beginning at 6 weeks old showed lower fasting and fed-state blood 

glucose concentrations, better glucose disposal, higher insulin and C-peptide concentrations, and 

increased pancreatic GLUT2 and insulin mRNA expression than animals on the control diet [27]. By 
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12 weeks of age, all of the eight control animals had developed diabetes while diabetes was present in 

only one of eight of the magnesium-supplemented animals [27]. 

Glucose itself likely plays a regulatory role in the magnesium concentration of beta cells. In rat 

islets, D-glucose (and certain other sugars metabolized by islets) induces a dose-dependent increase in 

magnesium, independent of insulin release [28]. After experimentation with various inhibitors, 

researchers concluded that the magnesium-increasing effect of glucose in islets is not merely  

a consequence of the depolarization of the β-cell membrane (which accounted for approximately one 

third of magnesium uptake), but also of the islets themselves metabolizing glucose [28]. 

These mechanisms related to insulin secretion and insulin resistance, coupled with plausible roles of 

pro-inflammatory cytokines with which low magnesium has also been implicated, may be processes 

that depend on magnesium both directly and indirectly [18]. Of final mechanistic note, magnesium has 

long been hypothesized [29] to have a second messenger role with substantial downstream effects.  

Li et al. [30] recently demonstrated that T cells as well as epithelial tissue require free magnesium ion 

flux for effective antigen receptor signaling, with variable effects on calcium ion flux, depending on 

the agonist-receptor combination and cell type. Given the complexity and diversity of these signaling 

mechanisms across different tissues, the specific second messenger role for magnesium in the context 

of glucose and insulin metabolism remains an interesting and active area of research. 

4. Epidemiological Evidence for Magnesium in Offsetting Risk of Type 2 Diabetes 

Many observational and clinical studies have shown strong associations between serum and dietary 

magnesium and fasting insulin or insulin resistance [31–43], and impaired glucose metabolism or type 

2 diabetes [2,41–48]. The prospective observational studies of dietary magnesium have been nicely 

summarized in three separate meta-analyses [3,44,49], all published within the past 6 years. These, 

alongside the prospective observational literature in type 2 diabetes, are briefly summarized in  

Table 1, while Table 2 summarizes the observational (primarily cross-sectional) literature on related 

diabetes traits. 
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Table 1. Prospective observational studies of magnesium intake and risk of type 2 diabetes. 

Author (Year) Study/Population 
Total No.  

(No. Cases) 
Follow-up 

(Years) 
Association 1 

Dong et al. (2011) [3] Meta-analysis of 13 studies through 2011 
536,318  
(24,516) 

4–20 RR = 0.78 (0.73–0.84) 

Schulze et al. (2007) [49] Meta-analysis of 8 studies through 2006 
271,869  
(9192) 

4–16 RR = 0.77 (0.72–0.84) 

Larsson and Wolk (2007) [44] Meta-analysis of 7 studies 1966–2007 
286,668  
(10,915) 

4–17 RR per 100 mg/day = 0.85 (0.79–0.92) 

Hruby et al. (2013) [50] ~54 years old; Framingham Heart Study (US) 
2582  
(179) 

7 RR = 0.49 (0.27–0.88), p trend = 0.01 

Hopping et al. (2010) [51] 45–75 years old; Multi-Ethnic Cohort Study (US) 
75,512  
(8587) 

14 
Men HR = 0.77 (0.70–0.85),  

p trend < 0.0001; Women HR = 0.84  
(0.76–0.93), p trend = 0.0003 

Kim et al. (2010) [42] 
18–30 years old; Coronary Artery Risk Development 

in Young Adults (US) 
4497  
(330) 

20 HR = 0.53 (0.32–0.86), p trend < 0.01 

Kirii et al. (2010) [52] 
40–65 years old; Japan Collaborative Cohort Study 

for Evaluation of Cancer Risk (Japan) 
17,592  
(459) 

5 OR = 0.64 (0.44 to 0.94), p trend =  0.04 

Nanri et al. (2010) [53] 
45–75 years old; Japan Public Health Center-based 

Prospective Study (Japan) 
59,791  
(1114) 

5 
Men OR = 0.86 (0.63–1.16), p ≥ 0.05;  

Women OR = 0.92 (0.66–1.28), p ≥ 0.05 

Villegas et al. (2009) [47] 
~50 years old; Shanghai Women’s Health Study 

(China) 
64,191  
(2270) 

7 HR = 0.80 (0.68, 0.93), p trend < 0.0001 

Schulze et al. (2007) [49] 35–65 years old; EPIC-Potsdam (Germany) 
25,067  
(844) 

11 RR = 0.90 (0.72–1.12), p trend = 0.44 

He et al. (2006) [54] 2 
18–30 years old; Coronary Artery Risk Development 

in Young Adults (US) 
4637  
(226) 

15 HR = 0.51 (0.32–0.83), p trend < 0.01 

van Dam et al. (2006) [48] ~38 years old; Black Women’s Health Study (US) 
41,186  
(1964) 

8 HR = 0.65 (0.54–0.78), p trend < 0.0001 

Lopez-Ridaura et al. (2004) 
[45] 

~46 years old; Nurses’ Health Study (US) 
85,060  
(4085) 

18 RR = 0.66 (0.60–0.73), p trend < 0.001 
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Table 1. Cont. 

Lopez-Ridaura et al. (2004) 
[45] 

~54 years old; Health Professionals’ Follow-up 
Study (US) 

42,872  
(1333) 

12 RR = 0.67 (0.56–0.80), p trend < 0.001 

Hodge et al. (2004) [55] 
~54 years old; Melbourne Collaborative Cohort 

Study (Australia) 
31,641  
(365) 

4 OR per 500 mg/day = 0.62 (0.43–0.90) 

Song et al. (2004) [41] ~54 years old; Women’s Health Study (US) 
39,345  
(918) 

6 RR = 0.89 (0.71–1.10), p trend = 0.05 

Meyer et al. (2000) [56] ~61.5 years old; Iowa Women’s Health Study (US)
35,988  
(1141) 

6 RR = 0.67 (0.55–0.82), p trend = 0.0003 

Kao et al. (1999) [57] 
~53 years old; Atherosclerosis Risk in Communities 

(US) 
12,128  
(1106) 

6 
Black OR = 1.02 (0.58–1.76) 3, p trend = 0.68; 

White OR = 0.93 (0.67–1.29) 3, p trend = 0.84 
1 Reporting the multivariate-adjusted association (95% confidence interval) for high versus low intake, unless otherwise specified; 2 Primary study outcome was metabolic 

syndrome, of which impaired fasting glucose and/or type 2 diabetes was included as a component; 3 Highest intake category is reference category; presenting association 

reported for lowest intake category. HR, hazard ratio; OR, odds ratio; RR, relative risk. 

Table 2. Cross-sectional studies of magnesium intake and type 2 diabetes or glycemia-related traits. 

Author (Year) Study/Population No. Outcome and Association 1 

Hruby et al. (2013) [58]
Meta-analysis of 15 studies  

(US and Europe) 
52,684

FG β per 50 mg/day: −0.009 mmol/L (−0.013, −0.005), p < 0.0001;  
FI β per 50 mg/day: −0.020 ln-pmol/L (−0.024, −0.017), p < 0.0001 

Cahill et al. (2013) [59]
~43 years old; Complex Diseases in the 
Newfoundland Population: Environment 

and Genetics Study (Canada) 
2295 

FG low vs. high intake: 5.18 vs. 5.17 mmol/L, p trend ≥ 0.05; FI low vs. high intake:  
72.8 vs. 60.6 pmol/L, p trend < 0.001; HOMA-IR low vs. high intake: 2.5 vs. 2.1 units,  
p trend = 0.003; HOMA-β low vs. high intake: 142.4 vs. 116.2 units, p trend < 0.001 

McKeown et al. (2008) 
[60] 2 

~72 years old (elderly) (US) 535 IFG/T2D OR high vs. low intake: 0.41 (0.22–0.77), p trend = 0.005 

Ford et al. (2007) [61] 2
~43 years old; National Health and 
Nutrition Examination Survey (US) 

7669 IFG/T2D OR high vs. low intake: 0.85 (0.57–1.28), p trend = 0.371 

Bo et al. (2006) [62] 45–64 years old; (Italy) 1653 
T2D OR low vs. high intake: 4.3, p trend < 0.001; HOMA-IR low vs. high intake:  
0.5 vs. 0.4 units, p trend < 0.001; FG 3 low vs. high intake: 112.1 vs. 99.8 mg/dL,  

p trend < 0.001; FI 3 low vs. high intake: 1.9 vs. 1.7 uU/mL, p trend < 0.001 
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Table 2. Cont. 

Rumawas et al. (2006) 
[35] 

~54 years old; Framingham Heart Study 
(US) 

2708 

FG low vs. high intake: 94.8 vs. 94.9 mg/dL, p trend = 0.41; FI low vs.  
high intake:  

29.9 vs. 26.7 uU/mL, p trend < 0.001; 2h OGTT glucose low vs. high intake: 104.4 vs. 
100.7 mg/dL, p trend = 0.04; 2h OGTT insulin low vs. high intake:  

86.4 vs. 72 mU/mL,  
p trend < 0.001; HOMA-IR low vs. high intake: 7.0 vs. 6.2 units, p trend < 0.001 

Song et al. (2005)  
[63] 2 

~52 years old; Women’s Health Study 
(US) 

9887 Prevalence 3 IFG/T2D low vs. high intake: 5.0% vs. 3.3%, p trend = 0.005 

Huerta et al. (2005)  
[38] 4 

~13 years old (US) 48 
Correlation, r, HOMA-IR: −0.43 (−0.64 to −0.16), p = 0.002; Correlation, r,  

FI: −0.43 (−0.64 to −0.16), p = 0.002; Correlation, r, QUICKI: 0.43 (0.16–0.64),  
p = 0.002; Correlation, r, IS: Not significant, association not specified 

Song et al. (2004) [41]
~55 years old; Women’s Health Study 

(US) 
349 

Geometric mean FI low vs. high intake: 42.1 vs. 38.5 pmol/L, p trend = 0.08;  
BMI ≥ 25 kg/m2: 53.5 vs. 41.5 pmol/L, p trend = 0.03;  
BMI < 25 kg/m2: 34.8 vs. 33.0 pmol/L, p trend = 0.22 

Fung et al. (2003) [36]
45–60 years old; Nurses’ Health Study 

(US) 
219 Geometric mean FI low vs. high intake: 11.0 vs. 9.3 μU/mL, p trend = 0.04 

Ma et al. (1995) [43] 
45–64 years old; Atherosclerosis Risk in 

Communities (US) 
15,248

Mean difference FI high vs. low intake: White men, 13 pmol/L, p < 0.001; Black men,  
2 pmol/L, p = 0.72; White women, 12 pmol/L, p < 0.001; Black women, 27 pmol/L,  

p < 0.001; Mean difference FG high vs. low intake: Not specified 
Manolio et al.  

(1991) [64] 
18–30 years old; Coronary Artery Risk 

Development in Young Adults (US) 
3287 

Correlation, r, FI: −0.08 to −0.13, p < 0.01; FI β per mg/1000 kcal:  
−0.0006 ln-μU/mL, p = 0.0006 

1 In a given line, the outcome is listed first, followed by the multivariate-adjusted association [e.g., beta coefficient (β), odds ratio (OR), etc.], as specified. FG, fasting 

glucose; FI, fasting insulin; HOMA-β or -IR, homeostasis model assessment of β-cell function or insulin resistance; IFG, impaired fasting glucose; IS, insulin sensitivity; 

OGTT, oral glucose tolerance test; OR, odds ratio; QUICKI, quantitative insulin sensitivity check index; T2D, type 2 diabetes. 2 Primary study outcome was metabolic 

syndrome, of which impaired fasting glucose and/or type 2 diabetes was included as a component. 3 Unadjusted or crude association. 4 Case-control study. 



Nutrients 2013, 5 4998 

 

Prospective studies [41,42,45,47,48] have observed that individuals with high magnesium intake are 

10%–47% less likely to develop type 2 diabetes. A 2011 meta-analysis of 13 prospective cohort 

studies concluded that the relative risk of type 2 diabetes was 0.78 (95% CI 0.73–0.84) [dose response 

analysis: per 100 mg/day increment of magnesium intake, the relative risk was 0.86 (95% CI  

0.82–0.89)], and authors suggested that the inverse association was stronger in overweight/obese than 

normal-weight individuals [3]. However, weight status alone may not be a sufficient differentiator in 

explaining magnesium’s effects on type 2 diabetes risk: two recently published studies investigating 

serum magnesium (albeit not dietary magnesium), observed that serum magnesium appears to be 

related to glycemic control independent of obesity. One of these studies was a cross-sectional 

investigation of serum magnesium in metabolically healthy obese (vs. metabolically unhealthy obese) 

and metabolically obese normal weight (vs. metabolically healthy normal weight) individuals.  

The authors observed that metabolic health [e.g., absence of hypertension, hypertriglyceridemia, 

hyperglycemia, or insulin resistance (IR)], rather than obesity, per se, was associated with 

hypomagnesaemia [65]. Evidence from another study supporting a favorable link between magnesium 

and metabolic health investigated the effect of bariatric surgery in obese individuals with and without 

diabetes on serum magnesium concentrations. The authors observed that after surgery, serum 

magnesium increased only in individuals in whom diabetes was resolved, but remained unchanged in 

those for whom diabetes remained, irrespective of differences in weight loss [66]. 

Few studies have prospectively evaluated magnesium intake and insulin sensitivity or resistance 

over the long term (i.e., >5 years). One prospective investigation of magnesium intake in 1036 US 

adults (56.4% women) participating in the Insulin Resistance Atherosclerosis Study who were free of 

initial and incident type 2 diabetes, estimated that the optimal magnesium intake in relation to insulin 

sensitivity was at least 325 mg/day [40]. The authors observed progressively poorer insulin sensitivity 

below that threshold, but no evidence for improvement of sensitivity above that threshold. In this 

study, insulin sensitivity was assessed by intravenous glucose tolerance tests, considered to be a 

criterion test for this measure of insulin metabolism. Another study of young Americans, 18–30 years 

old at baseline and followed for 20 years, observed lower averaged HOMA-β or IR (homeostasis 

model assessment of β-cell function or insulin resistance) over this time period in those with higher 

magnesium intake [42]. In our own investigation in the Framingham Heart Study Offspring, we 

observed a 6.9% incident of diabetes over 7 years of follow-up. Those with the highest magnesium 

intake had 51% lower risk of developing diabetes than those with the lowest intake, and there was a 

significant trend across increasing quartile categories of intake in these middle-aged adults, even after 

adjustment for a number of risk and lifestyle factors, including dietary fiber intake. We also examined 

HOMA-IR in those 2185 subjects who did not develop diabetes, and observed significant inverse 

trends with higher magnesium intake and subsequent HOMA-IR in risk factor-adjusted models. 

However, the trend in these seemingly metabolically healthy individuals was attenuated after 

additionally adjusting for dietary fiber [50]. 

A small body of clinical evidence supports a role for magnesium supplementation in glucose and 

insulin metabolism (Table 3). A meta-analysis of nine magnesium supplement trials in those with type 

2 diabetes found that a median magnesium dose of 360 mg/day was associated with significantly lower 

post-intervention fasting glucose in the treatment groups, suggesting improved glucose control [2].  

A recent randomized, placebo-controlled trial in 25 obese, non-diabetic, normo-magnesaemic 
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individuals who supplemented with 365 mg/day of magnesium for six months improved plasma 

fasting glucose from 5.07 to 4.75 mmol/L, fasting serum insulin from 109.42 to 100.00 pmol/L, the 

Matsuda insulin sensitivity index from 3.43 to 4.04, and HOMA-IR from 3.49 to 2.97, differences that 

were not evident in the 22 placebo controls, in whom no improvements were observed [33]. 

Interestingly, Gutt’s insulin sensitivity index, 2-h post-OGTT glucose, and 2-h post-OGTT insulin did 

not change significantly between groups [33] suggesting that glycemic homeostasis was affected by 

the intervention, but not glycemic response. Another recent cross-over supplementation trial in  

14 overweight but otherwise healthy adults also showed that 4 weeks of 500 mg/day of magnesium 

citrate led to lower C-peptide and fasting insulin concentrations [12], suggesting reduced pancreatic 

insulin secretion which could have resulted from improved insulin sensitivity and subsequent lowered 

demand on the pancreas. Supplementation with magnesium in individuals with other risk factors, such 

as mild hypertension or hypomagnesaemia, has also been found to be effective in improving insulin 

sensitivity and pancreatic β-cell function [31,32,37]. In these studies, each of which lasted three 

months, supplemental magnesium doses ranged from 300 to 600 mg/day. Finally, in a small sample of 

six healthy, normomagnesaemic participants insulin sensitivity was mildly, but significantly reduced in 

all subjects (as measured by modified intravenous glucose tolerance test) after three weeks on a  

low-magnesium diet (3.69 ± 0.6 vs. 2.75 ± 0.5 min−1 per μU/mL × 10−4, p < 0.03, paired analysis). 

Interestingly, neither fasting glucose nor fasting insulin concentrations were significantly changed by 

this low magnesium diet [67]. 

5. The Genetics of Magnesium Homeostasis 

Despite magnesium’s tight homeostatic regulation, surprisingly little is known about the 

mechanisms that are broadly regulating total body magnesium in humans, perhaps owing to the 

complexity and ubiquity of magnesium and its roles in the body. Nevertheless, among the most 

investigated of the known genes implicated in magnesium transport and homeostasis are the variants in 

transient receptor potential cation channel, subfamily M (TRPM), members 6 (TRPM6) or 7 (TRPM7), 

which encode magnesium transporters: TRPM6 expression occurring mainly in the kidney and 

intestine, where it is critical for reabsorption, while TRPM7 expression occurs ubiquitously [68]. After 

the TRPMs, additional mutations involved in familial hypomagnesemia (with or without hypocalcemia 

or hypercalciuria), such as mutations in CLDN16 and CLDN19 (which encode tight junction proteins 

claudin-16 and claudin-19 and regulate aspects of ion reabsorption in the kidney) [69], mutations in the 

solute carrier families 12 (SLC12A3—encoding a sodium/choride transporter) and 41 (SLC41A1 and 

SLC41A2—which mediate magnesium transport across membranes; interestingly the former is the only 

magnesium-responsive gene overexpressed in placental tissue of preeclamptic women [70]), 

magnesium transporter protein 1 (MagT1—another magnesium transporter; implicated in immune 

activation), among others. Functional and experimental studies on a number of these genes are 

extensive, and have been expertly reviewed by several authors [71–73]. 
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Table 3. Trials of magnesium and type 2 diabetes and related outcomes. 

Author (Year) Design/Population 1 
No., Tx 

(control)
Mg Tx vs. Control Post-Tx Effects 

Song et al. (2006) 
[2] 

Meta-analysis of 9 RCTs through 
January 2005, 4–16 week durations 

370 with 
T2D 

Median 360 mg/day FG: decreased; HbA1c: no change 

Guerrero-Romero 
and Rodriguez-

Moran (2011) [37] 

12 week; hypomagnesaemic, 
overweight; ~40 years old (Mexico) 

49 (48) 
2.5 g/day MgCl2 (solution);  

50 mL inactive solution 

FG: decreased; FI: decreased; Belfiore index: 
improved; HOMA-β: decreased only in placebo; 

serum Mg: increased 

Hadjistavri et al.  
(2010) [32] 

12 week; mild hypertensive, 
overweight; ~45 years old (Greece) 

24 (24) 
600 mg/day Mg pidolate 

(solution);  
lifestyle recommendations 

FG: no change; FI: decreased; HOMA-IR: 
decreased; Cedercholm index: increased; Matsuda 
index: increased; Stumvoll index: increased; AUC 
glucose: decreased; AUC insulin: decreased; serum 

and 24h urine Mg: increased 

Lee et al. (2009) [74]
12 week; healthy, normo-magnesaemic, 

overweight; 30–60 years old (Korea) 
75 (80) 

12.2 mmol (300 mg) as MgO; 
placebo 

FG: no difference between groups; FI: no difference 
between groups; HOMA-IR: no difference between 

groups; serum Mg: no change (except in those  
with hypertension) 

Guerrero-Romero et 
al. (2004) [31] 

12 week; hypomagnesaemic, insulin 
resistant, overweight; ~42.5 years old 

(Mexico) 
30 (30) 

2.5 g/day MgCl2 (solution);  
50 mL inactive solution 

FG: decreased; FI: decreased; HOMA-IR: 
decreased; serum Mg: increased 

Rodriguez-Moran 
and Guerrero-

Romero (2003) [75]

16 week; T2D, hypomagnesaemic;  
~56 years old (Mexico) 

32 (31) 
50 g MgCl2 (50 mL solution); 

placebo 
FG: decreased; FI: increased; HbA1c: decreased; 

HOMA-IR: decreased; serum Mg: increased 

Chacko et al.  
(2010) [12] 

Randomized, double-blind, crossover; 
4 week; 4 week washout; healthy, 
overweight; ~44.4 years old (US) 

13 
500 mg/day elemental Mg as 

Mg citrate; placebo 
FG: No change; HbA1c: increased (p = 0.08); FI: no 
change; C-peptide: decreased; serum Mg: no change 

Paolisso et al.  
(1994) [76] 

Randomized, double-blind, crossover; 
4 week; 3 week run-in; T2D,  

elderly (Italy) 
9 15.8 mmol/day; placebo 

FG: No change; glucose disposal: increased; 
glucose oxidation: increased; plasma and 

erythrocyte Mg: increased 
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Table 3. Cont. 

Purvis et al.  
(1994) [77] 

Randomized, double-blind, crossover; 
6 week; 2 week run-in,  
2 week washout; T2D, 

hypercholesterolemic; ~53.8 years old 
(US) 

28 
384 mg/day MgCl  
(Slo-Mag); placebo 

FG: no change; serum Mg: no change 

Paolisso et al.  
(1992) [34] 

Randomized, double-blind, crossover; 
4 week; 4 week run-in, 2 week 

washout; generally healthy, non-obese; 
~77.8 years old (Italy) 

12 
4.5 g/day Mg pidolate  

(16.2 mmol Mg); placebo 

FG: decreased; FI: no change; acute and total insulin 
response: increased; glucose disappearance: 

improved; hepatic glucose output: no difference; 
glucose uptake: improved; plasma and erythrocyte 

Mg: increased 

Paolisso et al.  
(1989) [78] 

Randomized, crossover; 4 week;  
3 week run-in, 2 week washout; T2D, 

moderately obese; ~67 years old (Italy)
8 3 g/day as Mag 2 

FG: decreased; acute and total insulin response: 
increased; glucose disappearance: improved; plasma 

and erythrocyte Mg: improved 

Paolisso et al.  
(1989) [79] 

Randomized, crossover; 4 week;  
3 week run-in, 2 week washout; T2D, 

moderately obese; ~67 years old (Italy)
8 2 g/day as Mag 2; placebo 

FG: decreased; acute insulin response: increased 
glucose infusion rate: increased; plasma and 

erythrocyte Mg: improved 

Yokota et al.  
(2004) [46] 

Uncontrolled supplementation study; 
30 day; mild T2D (no insulin);  

~51.6 years old (Japan) 
9 

300 mg/day as mineral water 
(Mag21, “bittern”); n/a 

FG: No change; HbA1c: no change; FI: 8.08 to  
5.89 μU/mL, p ≤ 0.05; HOMA-IR: 2.73 to 2.05 units 
p ≤ 0.05; serum and urinary Mg excretion: increased 

Nielsen et al  
(2007) [10] 

Depletion/repletion; depletion:  
≤78 day; repletion: ≥58 day; healthy, 

post-menopausal; 47–75 years old (US)
14 

Depletion: 33% of Mg RDA 
(101 mg/2000 kcal/day) diet; 

repletion: diet plus extra  
200 mg/day 

AUC glucose: higher during depletion than 
repletion; AUC insulin: no change; erythrocyte Mg: 

initial increase, then decrease during depletion; 
serum Mg: initial decrease, then increase during 

depletion 
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Table 3. Cont. 

Nadler et al. (1993) 
[67] 

Depletion; 3 week; presumably healthy, 
overweight (US) 

12 

Liquid diet: 1 week with  
400 mg/day MgCl2 followed 

by 3 week with low Mg  
[12 mg/day (<0.05 mmol/day)]; 

n/a 

FG: no change; FI: no change; Bergman index: 
decreased; serum and intracellular Mg: decreased 

1 Randomized, controlled trial, unless otherwise specified; AUC, area under the curve; FG, fasting glucose; FI, fasting insulin; HOMA-β or -IR, homeostasis model 

assessment of β-cell function or insulin resistance; IS, insulin sensitivity; Mg, magnesium; OGTT, oral glucose tolerance test; QUICKI, quantitative insulin sensitivity 

check index; RDA, recommended dietary allowance; T2D, type 2 diabetes; Tx, treatment. n/a, not applicable (no placebo). 
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Two additional studies in humans, both published in 2010, have spurred ongoing interest in the 

genetics of magnesium. One of these was a meta-analysis of genome-wide association studies 

(GWAS) of serum magnesium (as well as serum potassium and sodium), originally designed to 

evaluate the contribution of common genetic variation to the normal physiologic variation in serum 

concentrations [80]. No significant hits were found for sodium or potassium. However, six regions, 

while collectively only contributing to 1.6% of the variability in serum magnesium concentrations, 

were identified as top hits for magnesium (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, 

and MDS1). Nevertheless, because the top six polymorphisms seem to involve magnesium transport 

and homeostasis, it is plausible to hypothesize that they may also modify individual risk for 

magnesium-related conditions—including diabetes—in the face of differential magnesium intake. 

Finally, gene-expression profiles following four weeks of magnesium supplementation in a pilot 

trial with cross-over design in 14 overweight but otherwise healthy individuals, revealed that 

supplementation up-regulated 22 genes, and down-regulated 36 by 20% or more as compared to 

placebo, many of these involved in inflammatory pathways [12]. Most interestingly, perhaps, over half 

of the differentially regulated regions were of unknown function. The potential epigenetic effects of 

magnesium deficiency or supplementation in inflammation are supported in part by studies in rats of 

methylation of promoter regions of 11β-hydroxysteroid dehydrogenase-2 (Hsd11b2). In the offspring 

of magnesium-deficient dams, hepatic Hsd11b2 CpG promoters showed substantial hyper-methylation, 

likely pointing to downstream down-regulated gene expression [81]. Note that HSD11B1 gene 

deficiency (whose promoter region is hypo-methylated in calcium-deficiency in rats [82]) and 

HSD11B2 gene overexpression are associated with improvements in metabolic characteristics such as 

those related to hypertension and diabetes. 

While many genetic interaction studies, such as the ones we discuss in greater detail below,  

are “nutrigenetic” in that they reveal how or whether polymorphisms modify how we use nutrients, 

“nutrigenomics” studies such as the cross-over trial above reveal broader genetic response to 

magnesium supplementation as an environmental stimulus, revealing the complexity of our responses 

to environmental exposures. Hence the latter are hypothesis-generating, while results from the former 

may perhaps be more amenable to dictating personalized approaches to health and disease management. 

Interactions of Dietary Magnesium and Genes in Glucose and Insulin Homeostasis and Metabolism 

In humans, only four studies have thus far specifically investigated associations between loci in 

many of the candidate genes discussed above and diabetes or glycemic traits [58,68,83,84]. In 2009, 

Song et al. [84], first examined 20 haplotype-tagging single nucleotide polymorphisms (SNPs) in 

TRPM6 and 5 common SNPs in TRPM7 for their association with diabetes risk. They reported that two 

common non-synonymous TRPM6 coding region variants—Val1393Ile in exon 29 (rs3750425) and 

Lys1584Glu in exon 30 (rs2274924)—might confer susceptibility to type 2 diabetes in women with 

low magnesium intake. Women who were carriers of the two rare alleles of rs3750425 and rs2274924 

had nearly five times the odds of type 2 diabetes compared to women who were non-carriers, only 

when their magnesium intake was <250 mg/day. Two amino acid changes by these polymorphisms are 

located between the coiled region and kinase near the C-terminal and may reduce TRPM6 channel 

activity by changing protein conformation. However, the other three studies to date which have 
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investigated such relationships have found that magnesium-related variants did not individually modify 

either risk of type 2 diabetes [68,84] or glycemic traits [58,68]. Two of these studies [58,84] have also 

examined interactions of dietary magnesium intake with select risk loci implicated in diabetes- or 

magnesium-related traits. Again, neither study found strong evidence for interaction with any 

individual locus and magnesium intake. Recently, Nair et al. [83] conducted an association study to 

examine the relation between these two functional polymorphisms and gestational diabetes. They 

observed a significant association between carriers of the TRPM6 rs2274924 variant and elevated total 

glycosylated hemoglobin and greater prevalence of gestational diabetes in 997 women following 

delivery. They also conducted functional testing to explore the functionality of this SNP. The authors 

reported that the insulin signaling cascade is unable to activate the phosphorylation of the amino acid 

adjacent to the substituted amino acid resulting from the polymorphism, thereby rendering the variant 

TRPM6 channel insensitive to the activating effects of insulin. 

Hruby et al. [58] reported a dietary magnesium-gene interaction study involving over 50,000 

individuals free of diabetes from 15 cohorts in the US and Europe, which was the largest of the dietary 

magnesium-gene interaction studies conducted to date. Dietary intake in these cohorts was generally 

measured by food frequency questionnaire, and the loci selected for interaction analyses had been 

previously identified in GWAS as being related to either serum magnesium, or fasting glucose or 

insulin in non-diabetic individuals. In this study, no magnesium-related locus (including loci in 

TRMP6, TRPM7, CNNM2 and MUC1) was significantly associated with either fasting glucose or 

fasting insulin, and none of the eight magnesium-locus × dietary-magnesium interactions were 

statistically significant. However, the authors observed suggestive inverse association of rs2274924 

and rs3750425 in TRPM6 with fasting glucose, the same loci associated with risk of diabetes in women 

when in haplotype [84], and with risk of gestational diabetes [83]. The non-significant findings which 

nevertheless show some consistency with concurrent and prior work in this area, lend further 

plausibility to a role for TRPM6 in glycemia and diabetes. It is possible that in these studies, all of 

which have been observational, there is some unknown or uncontrolled for confounder which is 

obscuring a more clear relationship between the loci and the glycemia-related outcomes. 

In this meta-analysis, one suggestive interaction between magnesium intake and fasting glucose, 

was observed with rs3740393 in CNNM2. CNNM2 encodes a membrane protein required for renal 

magnesium handling and the G allele at this locus was associated with lower serum magnesium [80].  

If replicated in future studies, the interaction suggests that the magnitude of the inverse association between 

magnesium intake and fasting glucose is diminished in the presence of the serum magnesium-lowering 

G allele, versus the C allele. This interaction potentially indicates a higher dietary magnesium requirement 

in those with a propensity for lower serum magnesium, for beneficial effects on fasting glucose. 

6. Conclusions 

Type 2 diabetes is a complex, multifactorial disorder, heavily influenced by both genetic and 

environmental determinants. Yet neither genetics nor environmental factors alone explain why some 

develop the disease while others don’t, thus paving the way for hypotheses on environment-gene 

interactions, most notably interactions involving modifiable lifestyle factors such as physical activity 

and diet. 
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Findings from dietary magnesium-gene investigations conducted to date have generally failed to 

yield consistent and robust results. Interaction analyses have suffered from a number of limitations that 

may hamper the accumulation of unequivocal evidence. As has been frequently noted by those 

working in the field of nutrigenetics/nutrigenomics [85] at the epidemiologic level, such work is 

inherently complex, likely involving multiple loci, biomarkers, and biofeedback, and yet thus far 

statistical modeling has taken a relatively simple approach (e.g., a single locus, haplotype, or genetic 

risk score based on multiple loci, crossed with a single measure of the environmental or dietary 

exposure). Studies are prone to spurious associations, and signals are potentially overwhelmed by 

residual confounding, imprecise dietary measures, or multiple testing. 

Future well-designed mechanistic studies, which would lend themselves to our basic understanding 

of magnesium homeostasis, are warranted. Among these is a relatively straightforward study of 

magnesium supplementation in carriers of rare variants associated with magnesium homeostasis and 

transport, notably the TRPMs as well as familial hypomagnesaemia, and how supplementation in these 

individuals differentially affects biomarkers of magnesium status relative to those without the 

mutations. Such a study would do much to not only assess the magnitude of the impact of serum 

magnesium-lowering alleles in the presence of equivalent dietary intake in non-carriers, but also the 

underlying mechanisms. 

A second and equally obvious trial is that of magnesium supplementation as primary prevention for 

diabetes. To date, such a study has been unfeasible owing to length-of-follow-up and costs associated 

with long-term randomized trials. Hampering this and other studies of single supplemental nutrients is 

the historicity of the single-nutrient approach in the context of the randomized trial: many have 

notoriously not wrought the fruit suggested they would by observational literature. Nevertheless, other 

observational approaches designed to advance our understanding of magnesium-gene interactions  

are underway, including a genome-wide interaction study of magnesium intake involving over  

20 observational cohorts in the US and Europe. In the interim, then, these and functional and 

mechanistic studies, coupled with smaller trials in genetically or physiologically at-risk individuals 

will continue to be the norm, and will hopefully lend themselves to the incremental insights needed to 

truly understand the myriad roles of this fascinating and yet relatively underappreciated mineral. 
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