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Comprehensive Metabolomic Profiling and Incident Cardiovascular
Disease: A Systematic Review
Miguel Ruiz-Canela, PhD, MPH;* Adela Hruby, PhD, MPH;* Clary B. Clish, PhD; Liming Liang, PhD; Miguel A. Mart�ınez-Gonz�alez, MPH, MD,
PhD; Frank B. Hu, MPH, MD, PhD

Background-—Metabolomics is a promising tool of cardiovascular biomarker discovery. We systematically reviewed the literature
on comprehensive metabolomic profiling in association with incident cardiovascular disease (CVD).

Methods and Results-—We searched MEDLINE and EMBASE from inception to January 2016. Studies were eligible if they
pertained to adult humans; followed an agnostic and/or comprehensive approach; used serum or plasma (not urine or other
biospecimens); conducted metabolite profiling at baseline in the context of examining prospective disease; and included
myocardial infarction, stroke, and/or CVD death in the CVD outcome definition. We identified 12 original articles (9 cohort and 3
nested case-control studies); participant numbers ranged from 67 to 7256. Mass spectrometry was the predominant analytical
method. The number and chemical diversity of metabolites were very heterogeneous, ranging from 31 to >10 000 features. Four
studies used untargeted profiling. Different types of metabolites were associated with CVD risk: acylcarnitines, dicarboxylacyl-
carnitines, and several amino acids and lipid classes. Only tiny improvements in CVD prediction beyond traditional risk factors were
observed using these metabolites (C index improvement ranged from 0.006 to 0.05).

Conclusions-—There are a limited number of longitudinal studies assessing associations between comprehensive metabolomic
profiles and CVD risk. Quantitatively synthesizing the literature is challenging because of the widely varying analytical tools and the
diversity of methodological and statistical approaches. Although some results are promising, more research is needed, notably
standardization of metabolomic techniques and statistical approaches. Replication and combinations of novel and holistic
methodological approaches would move the field toward the realization of its promise. ( J Am Heart Assoc. 2017;6:e005705.
DOI: 10.1161/JAHA.117.005705.)
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C ardiovascular disease (CVD) continues to be a major
global public health challenge. In 2013, coronary heart

disease and stroke were globally the first and third leading
causes of years of life lost, respectively.1 In the United States,
85 million adults currently have at least 1 type of CVD, and
approximately half of them are under 60 years of age.2

Globally, population aging and growth have led to increasing
numbers of CVD deaths.3 Moreover, premature cardiovascular
mortality is estimated to continue at present rates or even to

increase if policies to combat CVD risk factors are not
successful.4 This scenario supports a strong need to improve
CVD prevention.

A key factor in the fight against CVD is broadening our
knowledge of the pathophysiological processes of this
complex disease. Among the “omics” sciences, metabolomics
has brought a paradigm shift to metabolic research.
Metabolomics is the identification and quantification of small
molecules that reflect the state of the organism at a particular
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moment in time. Currently, high-throughput technologies
allow the quantification of hundreds of circulating metabolites
across multiple pathways in a single measurement. This
approach is advantageous because it is not limited to a single
enzymatic reaction or pathway; rather, it captures the
complexity of metabolic networks. Metabolomics has consid-
erably increased interest in metabolism across cardiovascular
research.5

Large-scale metabolomic profiling, including “metabolome-
wide” studies, may identify metabolic changes that precede
irreversible organ damage and the appearance of disease and
thereby may lead to the early identification of individuals at
high CVD risk. For this reason the search for metabolites that
could be used as clinical biomarkers is probably 1 of the most
interesting aspects of metabolomics in CVD research.6 The
identification of metabolomic risk profiles has the potential to
improve risk stratification and early identification of CVD. In
fact, metabolomics and its sister science, lipidomics, are
among the newest approaches in the search for novel
biomarkers.7 Single biomarkers are no longer sufficient to
interpret or characterize complex biological phenomena, and
new metabolomic approaches recognize the importance of
characterizing the interrelation of metabolites—the metabolic

“fingerprint” of disease and preclinical disease states. An
inherent interest in using metabolomics in cardiovascular
medicine is also driven by the hypothesis that metabolomics
findings may lead to a better understanding of the patho-
physiology and biological mechanisms involved in the genesis
of clinical CVD events. Such an understanding would pave the
way to new, evidence-based approaches in preventing and
managing CVD.

Comprehensive metabolomic profiling applied to CVD is
still in its relative infancy.8,9 Currently, there is no single
approach that provides comprehensive coverage of the
human metabolome, and many approaches have been used
alongside a wide range of analytical platforms, each requiring
specific sample preparation, approaches (eg, targeted versus
untargeted), and post-data acquisition statistical methods.10

Given the wide variety of metabolomic profiling
approaches, in this systematic review, we aimed to assess
and summarize existing literature on comprehensive profiling
of circulating metabolites, following an agnostic or hypothe-
sis-free approach, and incident CVD, focusing our review on
analytical methods, metabolites assessed and associated with
incident CVD risk, and the predictive value of these
metabolites.

Methods
The review protocol was registered in PROSPERO Interna-
tional Prospective Register of Systematic Reviews (crd.yor-
k.ac.uk/prospero/index.asp Identifier: CRD42015015594).
This systematic review was performed according to the
MOOSE (Meta-analysis Of Observational Studies in Epidemi-
ology) checklist11 (Table 1).

Data Sources and Search Strategies
We conducted a comprehensive search in MEDLINE (via Ovid
and PubMed) and EMBASE from inception through December
2016. Our search strategy included medical subject headings
and key terms related to metabolomics and CVD (Table 2).
The search in EMBASE was limited to English, Catalan, Czech,
French, German, Italian, Portuguese, Slovak, or Spanish,
reflecting the competencies of the first authors. No language
limits were set in MEDLINE. We also manually searched
references in relevant articles that were identified during
screening.

Eligibility Criteria
Two investigators (M.R.-C. and A.H.) independently reviewed
all titles and abstracts identified by the search using an online
tool for title and abstract screening (http://abstrackr.cebm.

Clinical Perspective

What Is New?

• Metabolomic profiling may identify metabolites potentially
useful as clinical biomarkers for risk stratification and early
identification of cardiovascular disease (CVD).

• This systematic review showed that only a small number of
longitudinal studies have used comprehensive profiling of
circulating metabolites in plasma or serum to identify an
early “metabolic fingerprint” for CVD.

• Currently, metabolite species associated with higher CVD
risk include acylcarnitines, dicarboxylacylcarnitines, as well
as several amino acids such as phenylalanine and gluta-
mate, and several lipid classes; however, the addition of
these metabolites to CVD risk prediction already employing
traditional risk factors yields only small improvements in
predictions.

What Are the Clinical Implications?

• Current data are promising, although metabolomics
approaches and results appear to be heterogeneous.

• The lack of robust replications is one of the main limitations
in the existing literature due to heterogeneity in study
designs, definitions of end points, features of the metabo-
lomics platforms, and small sample sizes.

• Additional studies are needed to identify clinically useful
metabolic fingerprints for early identification of individuals
at high CVD risk.
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Table 1. MOOSE Checklist for Meta-Analyses of Observational Studies11

Item No. Recommendation Reported on Page No.

Reporting of background should include

1 Problem definition 1-2

2 Hypothesis statement n/a

3 Description of study outcome(s) 2

4 Type of exposure or intervention used 2

5 Type of study designs used 2

6 Study population 2

Reporting of search strategy should include

7 Qualifications of searchers (eg, librarians and investigators) 2

8 Search strategy, including time period included in the synthesis and key words 2, Table 2

9 Effort to include all available studies, including contact with authors 2

10 Databases and registries searched 2

11 Search software used, name and version, including special features used (eg, explosion) 2, Table 2

12 Use of hand searching (eg, reference lists of obtained articles) 2

13 List of citations located and those excluded, including justification Figure

14 Method of addressing articles published in languages other than English 2

15 Method of handling abstracts and unpublished studies n/a

16 Description of any contact with authors n/a

Reporting of methods should include

17 Description of relevance or appropriateness of studies assembled for assessing the hypothesis
to be tested

2, 4

18 Rationale for the selection and coding of data (eg, sound clinical principles or convenience) 4

19 Documentation of how data were classified and coded (eg, multiple raters, blinding, and
interrater reliability)

2, 4

20 Assessment of confounding (eg, comparability of cases and controls in studies where
appropriate)

n/a

21 Assessment of study quality, including blinding of quality assessors, stratification, or
regression on possible predictors of study results

n/a

22 Assessment of heterogeneity n/a

23 Description of statistical methods (eg, complete description of fixed or random effects models,
justification of whether the chosen models account for predictors of study results, dose-
response models, or cumulative meta-analysis) in sufficient detail to be replicated

n/a

24 Provision of appropriate tables and graphics 4

Reporting of results should include

25 Graphic summarizing individual study estimates and overall estimate n/a

26 Table giving descriptive information for each study included Table 3

27 Results of sensitivity testing (eg, subgroup analysis) n/a

28 Indication of statistical uncertainty of findings n/a

Reporting of discussion should include

29 Quantitative assessment of bias (eg, publication bias) n/a

30 Assessment of quality of included studies n/a

31 Justification for exclusion (eg, exclusion of non-English-language citations) 16, 19, 20

Continued
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brown.edu/). Studies with discrepant decisions were full-text
reviewed, and disagreements between reviewers were
resolved by consensus.

Studies were eligible if they met the following criteria:
studies had to have been conducted in adult, nonpregnant
humans; metabolites studied had to be related to more than 1
specific biological pathway or come from different chemical
classes (ie, following an agnostic and/or comprehensive
approach); serum or plasma was the biospecimen (we
excluded metabolomics profiling conducted in urine samples);
metabolite profiling had to have been conducted at least at
baseline in the context of a prospective study; and myocardial
infarction, stroke, and/or CVD death were included as part of
the definition of the main CVD outcome(s).

Data Extraction
Data, extracted independently by 2 investigators (M.R.-C. and
A.H.), included first author, year of publication and journal,
study name and location, design of the study, duration of
follow-up, sample size, analysis technique, biospecimen
(serum/plasma), primary outcome, number, type, and identity
of metabolites investigated, analysis approach (targeted/
untargeted), statistical tests used, covariates included in the
fully adjusted model, and main findings.

Results

Search Retrieval
We identified 629 titles from electronic databases after the
removal of duplicates (Figure). Following the screening of
titles and abstracts, 202 articles were eligible for full-text
review; 11 of these were selected, and 1 article was added
after a hand search, for a total of 12 original articles included
in the present systematic review.12–23 Most of the 191
articles were excluded because they were cross-sectional or
did not include in their outcome definition at least 1 of our
prespecified CVD outcomes (ie, MI, stroke, and/or CVD
death).

Characteristics of Included Studies
General characteristics of the 12 selected articles12–23 are
shown in Table 3. Half of the articles (6/12) were published in
2014, and all except 220,23 were conducted using European
and/or US populations. These 12 articles include 19 separate
primary discovery (or “learning”) and replication (or “valida-
tion”) analyses of metabolites in relation to CVD risk. Three
articles12,13,15 included replication analyses conducted in
samples derived from the same population, and another 4
articles included replication analyses conducted in 118,19,23 or

Table 1. Continued

Item No. Recommendation Reported on Page No.

Reporting of conclusions should include

32 Consideration of alternative explanations for observed results 20

33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain
of the literature review)

20

34 Guidelines for future research 20

35 Disclosure of funding source 23, 20, 21

n/a indicates not available.

Table 2. Search Strategy and Terms

Search Engine Search Expression

PubMed (“metabolome”[MeSH Terms] OR “metabolomics”[MeSH Terms] OR metabolo* [All Fields] OR metabonom* [All Fields] OR
“metabolite network*” [All Fields] OR “metabolite profile*” [All Fields] OR lipidom* [All Fields]) AND “Cardiovascular
Diseases”[MeSH] AND (“Magnetic Resonance Spectroscopy”[MeSH] OR “High-Throughput Screening Assays”[MeSH] OR
“Chromatography”[MeSH] OR “Mass Spectrometry”[MeSH])

EMBASE ‘metabolome’/exp OR ‘metabolomics’/exp OR metabolom* OR metabonom* OR ‘metabolite network’ OR ‘metabolite profile’
OR lipidom* AND (‘magnetic resonance spectroscopy’/exp OR ‘high-throughput screening assays’/exp OR
‘chromatography’/exp OR ‘liquid chromatography’/exp OR ‘mass spectrometry’/exp) AND (‘cardiovascular disease’/exp OR
‘cardiovascular disease’) AND ([article]/lim OR [article in press]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim
OR [review]/lim) AND ([catalan]/lim OR [czech]/lim OR [english]/lim OR [french]/lim OR [german]/lim OR [italian]/lim OR
[portuguese]/lim OR [slovak]/lim OR [spanish]/lim) AND [humans]/lim
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222 samples from different populations. Publications by Shah
and colleagues12 and Zheng and colleagues21 presented the
associations between metabolites and CVD risk only as
secondary analyses. Several articles12,13,17 included cross-
sectional analyses as well.

Most of the articles used a cohort design for 1 or more of
their analyses,12,14,16,18–23 4 articles exclusively or addition-
ally included a case-cohort design,17,19,22,23 and 3 exclusively
or additionally included a case-control design,12,13,15 either as
the discovery or replication sample analysis. The average
follow-up was 10 years or less in most analyses, except for 6
analyses in 2 separate articles that each included follow-up
longer than 10 years.21,22 Participant numbers in a given
analysis ranged from 67 participants16 to 7256 participants.22

Sample size or power calculations were not explicitly men-
tioned in any article, although Rizza and colleagues acknowl-
edged their small sample size (67 participants) as the main

limitation of their study and performed survival random forest
analysis as a way to strengthen their results.16

Participants in 6 articles were free of CVD at baseline,15,17-
19,21,22 but 1 of them was conducted in individuals initiating
hemodialysis.15 In 3 articles12-14 participants had a previous
history of suspected coronary disease at baseline. Another
article included older participants, of whom 68% had a prior
history of CVD,16 and 2 articles included exclusively individ-
uals with type 2 diabetes mellitus coupled with history of CVD
or other CVD risk factors.20,23

In most studies the main outcome was a composite of
several end points in addition to MI, stroke, and/or CVD
death, with additional CVD conditions including, for example,
angina, revascularization, or heart failure.

All of the studies used variations of mass spectrometry
(MS) for analyzing metabolite features, while 2 studies also
used nuclear magnetic resonance spectroscopy (NMR) or

Records identified through PubMed
(n = 258)

Records identified through EMBASE
(n = 456)

Records after duplicates removed
(n = 629)

Records excluded
after abstract review

(n = 427)

Full-text articles assessed
(n = 202)

Full-text articles excluded
(n =191)

73 unrelated outcome
46 cross-sectional
39 unrelated scope 

(eg., diet, treatment)
17 other biospecimen

7 reviews/commentaries
6 unrelated populations
3 in Chinese language

Studies included in the 
qualitative synthesis

(n = 12)

Hand search
(n = 1)

Figure. Flow diagram of search results.
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both NMR and MS techniques.17,22 Additionally, the consis-
tency between NMR and liquid chromatography (LC)-MS for
biomarker associations with CVD was assessed by W€urtz and
colleagues.22 Twelve analyses relied on plasma, and 7 used
serum samples.

Methodological and Statistical Approaches
Four studies used an untargeted profiling approach to identify
both unknown and known compounds, including up to 10 162
metabolite features,13,17,19,21 although Zheng and col-
leagues21 only analyzed 356 named compounds (Table 4). In
the reporting of results of these untargeted analyses,
independent associations of each metabolite feature were
not presented in either the main text or supplemental material
(likely due to limitations of space); thus, all unreported
associations are presumed to be null. However, 11 out of 12
articles,12,13,15–23 whether targeted or untargeted in their
approach, included univariate- or multivariate-adjusted esti-
mates of statistically significant single metabolite associations
with CVD incidence in either the main text or supplemental
material. Among the studies including only targeted/known
metabolites, there was a minimum of 31 metabolites in the
study by Kume and colleagues20 and a maximum of 310 lipid
species in the study by Alshehry and colleagues.23 Targeted
metabolite features tended to include groups of amino acids
and related metabolites, acylcarnitines, and lipids.

Different data reduction approaches were applied, includ-
ing principal component analysis (PCA), stepwise selection,
correlation minimization, and others. PCA was implemented in
3 (primary) analyses,12,14,16 and another employed PCA in
secondary analyses.23 The derived factors were then used as
independent variables potentially associated with CVD risk. A
combination of learning/discovery and validation/replication
samples were used in 6 studies, in which features that were
found to be significant in the learning set were carried into the
validation set(s).12,13,15,19,22,23 The least absolute shrinkage
and selection operator (LASSO) algorithm was applied in 3
articles.17,18,23

In 6 of 12 articles,12,14,16,17,20,21 a score was developed
combining between a minimum of 4 and a maximum of 16
metabolites; scores were subsequently used as an indepen-
dent variable to predict CVD risk. Two of these articles
calculated a score by summing the regression coefficients of
metabolites independently associated with CVD, multiplied by
the metabolite levels, and then used the score to prospec-
tively assess the association with CVD.17,20 Another article
used the sum of quartile ranks according to the association
between metabolites and alcohol and considered 3 specific
metabolic pathways.21

All articles except 1 used Cox regression models to
estimate the association between metabolites, components,Ta
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or scores and the risk of incident CVD. There was wide
variation in the covariates included in fully adjusted models,
although all except 213,21 included classic cardiovascular risk
factors (ie, age, sex, smoking, body mass index, diabetes
mellitus, hypertension or blood pressure, and total or HDL
cholesterol).

Metabolites Associated With CVD Risk
The metabolite features in the 3 articles12,14,16 primarily
evaluating PCA-derived components were carnitines and
amino acids. Higher CVD risk was found for participants with
higher levels of short-,12,14 medium-,16 and long-chain14

carnitines. PCA components including the amino acids
alanine16 and proline14 were also associated with higher
CVD risk.

The 3 articles17,20,21 that developed scores based on
regression coefficients of individual metabolites observed
higher CVD risk with higher scores. Vaarhorst and col-
leagues17 developed a metabolite score derived from untar-
geted NMR with signals corresponding to 36 different
compounds. In a LASSO algorithm, 16 metabolite signals
were included in the score: creatinine, serine, glucose, 1,5-
anhydrosorbitol, trimethylamine N-oxide (TMAO), ornithine,
citrate, glutamate, glycoproteins, an unsaturated lipid struc-
ture, valine, and 5 nonannotated signals. Kume and col-
leagues20 targeted 31 amino acids using high-performance
LC-electrospray ionization-MS/MS and calculated the area
under the curve for models including all possible combina-
tions of 6 or fewer amino acids. The final model included
ethanolamine, hydroxyproline, glutamic acid, 3-methylhisti-
dine, tyrosine, and tryptophan, and it was defined as the
amino acid-based index. Zheng and colleagues, in an untar-
geted NMR approach capturing 356 named compounds
(mainly lipids and amino acids), developed scores from the
sums of quartile ranks of alcohol-related metabolites belong-
ing to 3 metabolic pathways—the c-glutamyl dipeptide
pathway (c-glutamyl, valine, phenylalanine, leucine, isoleucine,
tyrosine, glutamate, and alanine), the lysophosphatidylcholine
pathway (1-palmitoleoyl-glycerophosphocholine, 1-stearoyl-
glycerophosphoethanolamine, 1-pentadecanoyl-glyceropho-
sphocholine, and 2-arachidonoyl-glycerophosphoethanola-
mine), and the 2-hydroxybutyrate pathway (2-aminobutyrate,
a-hydroxyisovalerate, a-hydroxyisobutyrate, a-hydroxyiso-
caproate, 2-hydroxy-3-methylvalerate, and 2-hydroxybuty-
rate). Higher lysophosphatidylcholine scores and the 2-
hydroxybutyrate scores were associated with 4% to 7% higher
CVD risk, and the c-glutamyl dipeptide score was associated
with 2% reduced risk.21

Five articles13,15,18,19,22 reduced the initial number of
metabolites (ranging from 6822 to >10 00019 features) using
either false discovery rate or Bonferroni approaches, resultingTa
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in 415 to 3219 features, which were subsequently further
analyzed.

Wang and colleagues13 initially reduced >2000 high-
performance LC-MS features to 18 using Bonferroni and
trend criteria, 17/18 of which were independently associated
with CVD (identified in the article by their mass-to-charge
ratios and retention times only). Subsequent analyses,
however, focused on 3 phosphatidylcholine metabolites that
were highly correlated with each other. Choline, TMAO, and
betaine, metabolites related to gut flora, were associated with
higher CVD risk, with higher choline notably associated with
18 times (95%CI 4.9-66.5) the risk when the highest quartile
was compared with the lowest.

Kalim and colleagues15 initially targeted 165 LC-MS/MS
metabolites (amino acids and derivatives, carnitines, urea
cycle intermediates, nucleotides, positively charged polar
metabolites) and, after Bonferroni correction, focused on 4
acylcarnitines plus TMAO. The 4 acylcarnitines (oleoylcar-
nitine, lineoylcarnitine, palmitoylcarnitine, and stearoylcar-
nitine) were highly correlated; thus, only oleoylcarnitine was
evaluated against CVD risk in both discovery and replication
analyses, where higher levels were associated with 2.7- and
1.5-fold higher odds of CVD, respectively. TMAO was
nominally associated with higher CVD risk in the discovery
but not replication analyses.

Stegemann and colleagues18 initially targeted 135 lipid
features in triple-quadrupole-MS, reduced to 28 after false
discovery rate, finally focusing on 3 lipid metabolites consis-
tent across LASSO and 2 other selection methods (backward
stepwise and best subset). Triacylglycerol 54:2, cholesterol
ester 16:1 and phosphatidylethanolamine 36:5 were each
associated with between 16% and 24% higher risk of CVD.

In an untargeted ultraperformance LC-MS analysis of
10 162 features, Ganna and colleagues19 identified 32 unique
metabolites after false discovery rate correction, and these
were carried forward to a validation sample. In meta-analyses
of the discovery and validation samples, 3 metabolites were
significantly associated with lower CVD risk (lysophos-
phatidylcholine 18:1, 18:2, and sphingomyelin 28:1), and
another (monoglyceride 18:2) was associated with higher risk.
However, in a Mendelian randomization analysis only a weak
positive causal effect was suggested for the association
between monoglyceride 18:2 and CVD.

In an analysis of 68 targeted features including lipids,
amino acids, and other metabolites, W€urtz and colleagues22

identified 19 metabolites in the discovery cohort significant
after Bonferroni correction, which were subsequently carried
into 2 separate replication cohorts. In meta-analyses of the 3
cohorts, 5 metabolites were associated with risk of CVD:
phenylalanine and monounsaturated fatty acids were associ-
ated with 18% and 17% higher risk, respectively, and
polyunsaturated fatty acids, x-6 fatty acids, and

docosahexanoic acid were associated with 12%, 11%, and
10% lower risk of CVD, respectively.

Finally, Alshehry and colleagues23 evaluated 310 LC-MS–
derived lipid species in relation to CVD. After removing highly
correlated species in the discovery sample, 27 lipid species
were directly associated (including di- and trihexosylce-
ramides, alkylphosphatidylcholines, and lysoalkylphosphatidyl-
cholines), and 5 (including several phosphatidylcholines) were
inversely associated with CVD events and/or death. Results of
analyses for CVD death alone overlapped with those for events
and death combined.

Predictive Analysis
Nine articles assessed whether metabolites or scores signif-
icantly associated with CVD risk were useful in discriminating
and/or improving prediction of cases versus noncases
beyond that obtained with traditional risk factors alone and
reported Harrell C discrimination, net reclassification improve-
ment, and integrative discrimination improvement indices
(Table 5). Tiny improvements in CVD prediction were
observed when metabolites were added to predictive models
already containing traditional CVD risk factors. Specifically,
after adding the metabolites into the prediction model with
traditional CVD risk factors, the C index increased between
0.006 points in the study by Shah and colleagues14 and 0.05
points in the study by Rizza and colleagues.16

After a 2-step metabolite-ranking procedure and optimal
model selection, 7 lipid species were retained in the study by
Alshehry and colleagues23: alkylphosphatidylcholine [PC(O-
36:1)], cholesteryl ester [CE(18:0)], alkylphos-
phatidylethanolamine [PE(O-36:4)], phosphatidylcholines [PC
(28:0) and PC(35:4)], and lysophosphatidylcholines [LPC(20:0)
and LPC(18:2)]. Despite the inclusion of these species in
optimized CVD prediction models, only 3 were independently
significantly associated with CVD risk in weighted Cox models
in the discovery sample, and none was significant in the
replication sample. As shown in Table 5, the C index improved
from 0.680 using only clinical variables to 0.700 after addition
of these 7 lipid species.

Discussion
This systematic review identified 12 articles including 19
analyses that have prospectively assessed the association
between a wide circulating metabolomic profile and risk of
CVD events.12–23 These articles included metabolite features
measured at baseline using predominantly MS as the
analytical method. The number and chemical diversity of
metabolites were very heterogeneous. Several data reduction
approaches were followed in order to identify a smaller subset
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of metabolites associated with CVD risk. Most of these
articles also evaluated the incremental discriminative and
predictive capability of metabolites beyond the use of only
clinical information and traditional risk factors. Our system-
atic review reveals the diversity and complexity of current
metabolomic profiling in human CVD and, moreover, the
challenge of currently drawing any summary conclusions
regarding specific circulating metabolites as they relate to
CVD risk.

Metabolites Associated With CVD
According to this systematic review, the following types of
metabolites are, individually or as a group, associated with
CVD risk: acylcarnitines and dicarboxylacylcarnitines,12,14-16

TMAO,13,15,17 several amino acids such as phenylalanine,21,22

glutamate,17,20,21 and several lipid classes.18,19,21-23 In
hypothesis-based analyses with participants from the PRE-
DIMED study, we have also found an association between
CVD risk and branched-chain amino acids,24 acylcarnitines,25

glutamate,26 ceramides,27 and tryptophan.28 Other studies
have also found an association between a score of 3 amino
acids,29 as well as ceramides30 and the risk of CVD. This
consistency reinforces the potential causal relationship
between these metabolites and CVD or at least the role of
these metabolites as biomarkers of biological dysfunction
related to CVD.31

Interestingly, dicarboxylcarnitines and acylcarnitines,32

plasma branched and aromatic amino acids,33-35 phenylala-
nine,33-35 a-hydroxybutyrate,36,37 and ceramides38,39 have
been associated with cardiovascular risk factors including
obesity, insulin resistance, and diabetes mellitus. Different
complex mechanisms, including inflammation and stress
oxidation, are underlying processes potentially explaining
these associations.39

Metabolomic Approaches
In order to address specific questions regarding the utility and
practice of broad (agnostic) metabolic profiling (“metabolic
fingerprint”) in predicting CVD, we restricted our systematic
review to prospective studies assessing more than 1 specific
biological pathway and/or metabolites from different chem-
ical classes. Therefore, we excluded previous studies using
only 1 metabolite or only a small set of targeted compounds.
For example, we did not include a meta-analysis of 22
prospective studies published between 2001 and 2013 that
found an association between a single metabolite, asymmetric
dimethylarginine, and CVD outcomes.40 Although informative,
1 drawback of a relatively narrow, targeted approach is that it
does not render a global metabolic picture of our under-
standing of the complex biological mechanisms underlying

CVD, thus potentially leading us down less-than-fruitful
paths.41 Numerous parallels may be drawn with genetics
studies in this regard, where single variant studies have
frequently yielded different results from genome-wide studies.
However, genetics studies now benefit from considerably
more uniform techniques, statistical approaches, databases,
and reporting methods, all of which are still broadly lacking in
metabolomics research.

Eight of the articles in this review used a targeted approach
and analyzed metabolites from the same chemical families.
Among them, 5 articles targeted acylcarnitines and/or amino
acids,12,14-16,20 and 2 studies analyzed a group of lipids.18,23

W€urtz and colleagues22 included 68 metabolites, although
some compounds evaluated (eg, x-3 fatty acids) cannot be
properly considered “small” molecules. Among these targeted
approaches, the number of metabolites ranged from 31 amino
acids20 to 310 lipid species.23 Targeted metabolomics
quantifies the levels of metabolites, and it is preferable when
the aim is a specific pathway.42 However, limiting the number
or variety of metabolites may be considered a source of bias
when the aim is to define a more global metabolic profile or
identify the most important circulating biomarkers related to
CVD risk.43 In other words, when taken at face value, the
results of this systematic review could suggest that acyclar-
nitines are reliable predictors of incident CVD given that 4
articles showed elevated CVD risk with higher acylcarnitine
levels. However, this would belie 2 important points: first, that
which is not studied cannot be evaluated, and second, the
studies using an agnostic, untargeted approach did not find—
to our knowledge—associations of acylcarnitines with CVD
risk. However, this latter approach is likely to be less powerful
because of issues related to multiple testing in comparison
with targeted approaches based on a priori hypotheses.
Additionally, it is difficult to compare the results when the
number and nature of initial metabolites differ so greatly
among studies.

Four articles included in this systematic review followed an
untargeted approach.13,17,19,21 This approach is initially
considered an unbiased and unsupervised manner of
biomarker discovery. However, the initial range of metabolite
features ranged from 10017 to more than 10 000.19 In
addition to the potential risk of bias in those studies with less
comprehensive extraction procedures, an additional problem
in an untargeted approach is the identification of metabolites.
There is still a relatively low percentage of known metabolites
with annotated spectra.44 This results in additional difficulties
in comparing results from studies using different untargeted
methods.

In this review, articles using untargeted methods also
differed from those using targeted methods in the reliability of
quantification. An untargeted analysis usually provides a
relative quantification, whereas a targeted approach presents
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absolute quantities, usually expressed in micromolar units.
This difference in analytical approaches is also an important
factor in terms of comparability between studies. However,
improvements in instrumentation will likely allow the merging
of untargeted data collection with quantification of metabo-
lites. This would present an optimal situation, combining a
hypothesis-free approach with an approach driven by an a
priori hypothesis.

A related problem is with the reporting of findings. Journal
space limitations naturally preclude the publication of
hundreds of metabolite associations, even in supplemental
material. Even if the vast majority of these associations are
null, without the availability of such data, there is no reliable
way to include effect/association sizes in future quantitative
meta-analyses without risking a biased presentation. This will
likely become a more important issue as calls for full data and
results sharing continue to gain momentum.

Study Designs, Populations, and Outcomes
All the articles included in this systematic review measured
metabolites at baseline and assessed the association of these
profiles with incident CVD. Previous studies45-47 have com-
pared the metabolite phenotype of CVD patients with that of
healthy participants. Such an approach might allow the
identification of abnormalities in metabolism present in
diagnosed CVD, which may drive secondary prevention
endeavors.7 In contrast, the studies presented in this
systematic review were designed to study circulating metabo-
lites associated with future risk of CVD through the identi-
fication of early metabolic changes.5

We found important differences among articles in base-
line characteristics of participants and in outcome defini-
tions. Four articles included participants with baseline
coronary stenosis12-14 or previous history of CVD.16 This
makes it difficult to compare the findings for associations
between metabolite profiles and CVD across all the included
articles because the presence of baseline coronary disease
is likely already influencing the levels of metabolites.
Cardiometabolic risk factors such as anthropometric mark-
ers,48 obesity,33,48,49 and diabetes mellitus34,50 have been
shown to have a metabolic fingerprint. In previous research
we found that an association between baseline branched-
chain amino acids and CVD was no longer statistically
significant after adjusting for diabetes mellitus, dyslipidemia,
and hypertension, which may be intermediate factors in the
causal path.24 Moreover, the metabolite profile may be
different according to the stage of disease.51 Thus, the
varying selection criteria and control for confounders add
more challenges to understanding the complexity of
metabolic networks when comparing results among pub-
lished articles.52

Analytical Techniques
Eleven of 12 studies used MS with some separation
technique, with 1 of these additionally including NMR in a
targeted approach22; 1 study exclusively used NMR and
followed an untargeted approach.17 The study using both
NMR and MS techniques concluded that metabolite associ-
ations with CVD obtained from NMR were largely consistent
with those obtained using a LC-MS platform.22 Individual
metabolites are separated by their mass-to-charge ratio in the
first case and by their magnetic resonance shift in the second.
NMR requires minimal sample preparation and is less
expensive that MS.53 These characteristics make it more
appealing in the cardiovascular clinical context.54 However,
compared with MS, NMR has lower sensitivity and is limited to
the analysis of around 100 of the most abundant metabolites
in a sample. In fact, 100 signals were initially identified in the
study using NMR and an untargeted approach,17 whereas
thousands of signals were identified in the untargeted studies
using MS.13,19 Therefore, MS is ostensibly a better approach
to discovering new biomarkers because it enables the
measurement of low concentrations of metabolites.

Another difference among the studies was the type of
sample and sample-preparation method. Seven studies used
plasma samples, 3 used serum, and 2 used both.19,22

Samples were also not uniformly drawn in the fasted state.
Plasma and serum samples are similar but not equivalent, and
care should be taken before extrapolating results obtained
from plasma to serum or vice-versa. The sample preparation
and extraction protocol are key aspects of metabolomics
analyses. Physical aspects such as the extraction solvent,
temperature, derivatization reagents, and so on may affect the
extraction process. The use of coagulant could also affect
results. Thus, although reproducibility between plasma and
serum samples is possible, differences among metabolite
concentrations can be found between types of blood samples.

Statistical Analysis
All the articles included in this systematic review used
methods to identify a combination of metabolites or a reduced
number of individual metabolites related to CVD. The
approach of combining metabolite signals may lead to data
overfitting when using b coefficients obtained from analyses
of individual metabolites, in which weights were used to
calculate combined scores and thereafter to relate scores to
study outcomes. Six articles applied univariate analyses (ie,
when 1 metabolite is analyzed at a time) to select the
metabolites associated with CVD. Four of them13,19,22,23

initially used a discovery sample, followed by a correction
method for multiple testing (false discovery rate or Bonferroni)
and testing in a validation sample. Shah and colleagues12
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presented as main results metabolite features without
correction for multiple comparisons because they considered
the analyses to be exploratory and because a Bonferroni
correction was too conservative. Besides considering the
multiple testing issue, univariate analyses do not take into
account the relationship between and among metabolites in
similar or different pathways. In addition, many of the
analyses including 1 metabolite at a time (univariate analyses)
were unadjusted for potential confounders.

Six articles used data-driven multivariate methods in which
all variables are included simultaneously, and some variable-
reduction technique is subsequently applied to deal with the
relationships among them. Of these studies, 412,14,16,23

applied PCA, which is frequently used to deal with a high
number of interrelated variables in several biological path-
ways. The other 2 articles17,18 applied the LASSO algorithm,
which is an automated variable selection method, and another
used both multivariable models optimized with Akaike infor-
mation criteria and the LASSO algorithm.23 The study by
Stegemann and colleagues also applied 2 alternative selection
algorithms (backward stepwise and best subset) and included
a network analysis.18 Another data-driven approach—assess-
ing CVD risk according to metabolites grouped in scores—
presents an additional difficulty in synthesizing results among
the presently included studies. In the studies reviewed, score
calculations such as PCA, were based on approaches specific
to the samples studied, thus making it difficult to extrapolate
the relevance of these scores from 1 sample population to
another.

In short, the different statistical approaches show the
need for clearer standards about the statistical analyses
that should be applied in metabolomics. Data pretreatment
methods, including scaling, centering, and transformations,
are another source of heterogeneity between and among
studies. This methodological aspect is often overlooked,
although it can be an important determinant in the selection
process of those metabolites that may become more
influential in the results. Issues of sample size and
statistical power, addressed in a very limited fashion in
the studies included in this review, are also key aspects that
should be addressed more thoroughly in future metabolomic
analyses.

Limitations and Strengths
Several limitations of this systematic review should be
acknowledged. First, we excluded those studies that assessed
the association between only 1 or a small set of targeted
compounds and CVD risk. The typical rationals for these a
priori hypothesis-based studies are already known associa-
tions between specific metabolites and/or pathways and CVD
risk. Some of this knowledge was obtained in some cases

before the development of metabolomics. In contrast, this
review was focused on studies following a wider metabolomic
approach and where a statistical method was used for data
reduction. Our rationale for this decision was our aim to
obtain a robust summary of the best available evidence
relating a broad metabolomic fingerprint and a prospective
design with hard clinical end points. Second, for this same
reason we excluded studies using other types of biospeci-
mens such as urine or saliva. We opted to focus on circulating
blood metabolites to reduce the already known variability in
metabolomic profiles among different types of biosamples.
Third, we excluded cross-sectional studies that examined the
metabolomic profile of CVD patients and controls because our
aim was to identify metabolites associated with early
metabolic changes to predict the future risk of CVD. Fourth,
we were unable to conduct a quantitative analysis, mainly
because of the heterogeneity and limitations of the articles
already noted above, that is, widely differing metabolite
targets and approaches and differential reporting or nonre-
porting of associations. Nevertheless, our study is the first
attempt to systematically review the results and methodolog-
ical aspects of studies aimed to assess the association
between a wide peripheral blood metabolomic profile and risk
of future CVD events.

Conclusions
Metabolomics holds considerable promise as an emerging
field applied to the discovery of novel biomarkers for the
future risk of CVD. There are still a small number of
longitudinal studies assessing the association between base-
line metabolomic profiles and the risk of CVD. Current data
are promising, although approaches and results are hetero-
geneous. The lack of robust replications is 1 of the main
problems in the current literature because of heterogeneity in
study designs, end points, metabolomics platforms, and small
sample sizes. Toward this end, standardization of platforms,
data analysis approaches, and study designs is critical. We
also need larger numbers of cases, longer durations of follow-
up, and repeated measures of metabolites, if possible. A
pooled analysis of multiple studies would further help to
improve statistical power and standardize analytic
approaches. Finally, basic science research is needed to
achieve better understanding of the biological mechanisms
underlying the epidemiologic findings.
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