2,996 research outputs found

    How to infer relative fitness from a sample of genomic sequences

    Full text link
    Mounting evidence suggests that natural populations can harbor extensive fitness diversity with numerous genomic loci under selection. It is also known that genealogical trees for populations under selection are quantifiably different from those expected under neutral evolution and described statistically by Kingman's coalescent. While differences in the statistical structure of genealogies have long been used as a test for the presence of selection, the full extent of the information that they contain has not been exploited. Here we shall demonstrate that the shape of the reconstructed genealogical tree for a moderately large number of random genomic samples taken from a fitness diverse, but otherwise unstructured asexual population can be used to predict the relative fitness of individuals within the sample. To achieve this we define a heuristic algorithm, which we test in silico using simulations of a Wright-Fisher model for a realistic range of mutation rates and selection strength. Our inferred fitness ranking is based on a linear discriminator which identifies rapidly coalescing lineages in the reconstructed tree. Inferred fitness ranking correlates strongly with actual fitness, with a genome in the top 10% ranked being in the top 20% fittest with false discovery rate of 0.1-0.3 depending on the mutation/selection parameters. The ranking also enables to predict the genotypes that future populations inherit from the present one. While the inference accuracy increases monotonically with sample size, samples of 200 nearly saturate the performance. We propose that our approach can be used for inferring relative fitness of genomes obtained in single-cell sequencing of tumors and in monitoring viral outbreaks

    La responsabilitat civil del professorat

    Get PDF

    Una vida feta mestratge: Joan Fuster

    Get PDF
    Abstract not availabl

    First Law, Counterterms and Kerr-AdS_5 Black Holes

    Full text link
    We apply the counterterm subtraction technique to calculate the action and other quantities for the Kerr--AdS black hole in five dimensions using two boundary metrics; the Einstein universe and rotating Einstein universe with arbitrary angular velocity. In both cases, the resulting thermodynamic quantities satisfy the first law of thermodynamics. We point out that the reason for the violation of the first law in previous calculations is that the rotating Einstein universe, used as a boundary metric, was rotating with an angular velocity that depends on the black hole rotation parameter. Using a new coordinate system with a boundary metric that has an arbitrary angular velocity, one can show that the resulting physical quantities satisfy the first law.Comment: 19 pages, 1 figur

    Multi-Component KdV Hierarchy, V-Algebra and Non-Abelian Toda Theory

    Full text link
    I prove the recently conjectured relation between the 2×22\times 2-matrix differential operator L=2UL=\partial^2-U, and a certain non-linear and non-local Poisson bracket algebra (VV-algebra), containing a Virasoro subalgebra, which appeared in the study of a non-abelian Toda field theory. Here, I show that this VV-algebra is precisely given by the second Gelfand-Dikii bracket associated with LL. The Miura transformation is given which relates the second to the first Gelfand-Dikii bracket. The two Gelfand-Dikii brackets are also obtained from the associated (integro-) differential equation satisfied by fermion bilinears. The asymptotic expansion of the resolvent of (Lξ)Ψ=0(L-\xi)\Psi=0 is studied and its coefficients RlR_l yield an infinite sequence of hamiltonians with mutually vanishing Poisson brackets. I recall how this leads to a matrix KdV hierarchy which are flow equations for the three component fields T,V+,VT, V^+, V^- of UU. For V±=0V^\pm=0 they reduce to the ordinary KdV hierarchy. The corresponding matrix mKdV equations are also given, as well as the relation to the pseudo- differential operator approach. Most of the results continue to hold if UU is a hermitian n×nn\times n-matrix. Conjectures are made about n×nn\times n-matrix mthm^{\rm th}-order differential operators LL and associated V(n,m)V_{(n,m)}-algebras.Comment: 20 pages, revised: several references to earlier papers on multi-component KdV equations are adde

    Determination of the HQET Parameters from the BXsγB \to X_s\gamma Decay

    Full text link
    We combine the resummations for radiative corrections and for the heavy quark expansion to study the inclusive radiative decay BXsγB \to X_s\gamma. The infrared renormalon ambiguity is also taken into account. Including both theoretical and experimental uncertainties, we determine the allowed domain for the HQET parameters Λˉ{\bar \Lambda} and λ1\lambda_1 centered at Λˉ=0.65{\bar \Lambda}=0.65 GeV and λ1=0.71\lambda_1=-0.71 GeV2^2.Comment: IR renormalon ambiguity is include

    ON GRAVITATIONAL DRESSING OF 2D FIELD THEORIES IN CHIRAL GAUGE

    Full text link
    After giving a pedagogical review of the chiral gauge approach to 2D gravity, with particular emphasis on the derivation of the gravitational Ward identities, we discuss in some detail the interpretation of matter correlation functions coupled to gravity in chiral gauge. We argue that in chiral gauge no {\it explicit} gravitational dressing factor, analogue to the Liouville exponential in conformal gauge, is necessary for left-right symmetric matter operators. In particular, we examine the gravitationally dressed four-point correlation function of products of left and right fermions. We solve the corresponding gravitational Ward identity exactly: in the presence of gravity this four-point function exhibits a logarithmic short-distance singularity, instead of the power-law singularity in the absence of gravity. This rather surprising effect is non-perturbative in the gravitational coupling and is a sign for logarithms in the gravitationally dressed operator product expansions. We also discuss some perturbative evidence that the chiral Gross-Neveu model may remain integrable when coupled to gravity.Comment: 19 pages, uses phyzz

    Bremsstrahlung corrections to the decay bsγb \to s \gamma

    Full text link
    We calculate the O(αs\alpha_s) gluon Bremsstrahlung corrections to the inclusive decay bsγb \rightarrow s \gamma, involving the full operator basis O^1\hat O_1 -- O^8\hat O_8. Confirming and extending earlier calculations of Ali and Greub, we give formulas for the total decay width as well as the perturbative photon spectrum, regarding the former as a necessary part of the forthcoming complete NLO analysis. We explore in detail the renormalization scale dependence of our results and find it considerably increased.Comment: 23 pages, LaTeX, uses epsf.sty and rotate.sty. 4 figures (uuencoded postscript) appended as seperate file. A complete postscript version may be obtained from URL ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-93-95.ps.gz Final version as to appear in Physical Review D. Some minor errors corrected, without changes in the numerical results. One reference adde
    corecore