research

Multi-Component KdV Hierarchy, V-Algebra and Non-Abelian Toda Theory

Abstract

I prove the recently conjectured relation between the 2×22\times 2-matrix differential operator L=2UL=\partial^2-U, and a certain non-linear and non-local Poisson bracket algebra (VV-algebra), containing a Virasoro subalgebra, which appeared in the study of a non-abelian Toda field theory. Here, I show that this VV-algebra is precisely given by the second Gelfand-Dikii bracket associated with LL. The Miura transformation is given which relates the second to the first Gelfand-Dikii bracket. The two Gelfand-Dikii brackets are also obtained from the associated (integro-) differential equation satisfied by fermion bilinears. The asymptotic expansion of the resolvent of (Lξ)Ψ=0(L-\xi)\Psi=0 is studied and its coefficients RlR_l yield an infinite sequence of hamiltonians with mutually vanishing Poisson brackets. I recall how this leads to a matrix KdV hierarchy which are flow equations for the three component fields T,V+,VT, V^+, V^- of UU. For V±=0V^\pm=0 they reduce to the ordinary KdV hierarchy. The corresponding matrix mKdV equations are also given, as well as the relation to the pseudo- differential operator approach. Most of the results continue to hold if UU is a hermitian n×nn\times n-matrix. Conjectures are made about n×nn\times n-matrix mthm^{\rm th}-order differential operators LL and associated V(n,m)V_{(n,m)}-algebras.Comment: 20 pages, revised: several references to earlier papers on multi-component KdV equations are adde

    Similar works

    Full text

    thumbnail-image