47 research outputs found

    A review on innovative optical devices for the diagnosis of human soil-transmitted helminthiasis and schistosomiasis: from research and development to commercialization

    Get PDF
    Diagnosis of soil-transmitted helminth (STH) and schistosome infections relies largely on conventional microscopy which has limited sensitivity, requires highly trained personnel and is error-prone. Rapid advances in miniaturization of optical systems, sensors and proces-sors have enhanced research and development of digital and automated microscopes suitable for the detection of these diseases in resource-limited settings. While some studies have reported proof-of-principle results, others have evaluated the performance of working proto-types in field settings. The extensive commercialization of these innovative devices has, how-ever, not yet been achieved. This review provides an overview of recent publications (2010- 2022) on innovative field applicable optical devices which can be used for the diagnosis of STH and schistosome infections. Using an adapted technology readiness level (TRL) scale tak -ing into account the WHO target product profile (TPP) for these diseases, the developmental stages of the devices were ranked to determine the readiness for practical applications in field settings. From the reviewed 18 articles, 19 innovative optical devices were identified and ranked. Almost all of the devices (85%) were ranked with a TRL score below 8 indicating that, most of the devices are not ready for commercialization and field use. The potential lim-itations of these innovative devices were discussed. We believe that the outcome of this review can guide the end-to-end development of automated digital microscopes aligned with the WHO TPP for the diagnosis of STH and schistosome infections in resource-limited settings.Host-parasite interactio

    Alterations in Peripheral Blood B Cell Subsets and Dynamics of B Cell Responses during Human Schistosomiasis

    Get PDF
    Antibody responses are thought to play an important role in control of Schistosoma infections, yet little is known about the phenotype and function of B cells in human schistosomiasis. We set out to characterize B cell subsets and B cell responses to B cell receptor and Toll-like receptor 9 stimulation in Gabonese schoolchildren with Schistosoma haematobium infection. Frequencies of memory B cell (MBC) subsets were increased, whereas naive B cell frequencies were reduced in the schistosome-infected group. At the functional level, isolated B cells from schistosome-infected children showed higher expression of the activation marker CD23 upon stimulation, but lower proliferation and TNF-α production. Importantly, 6-months after 3 rounds of praziquantel treatment, frequencies of naive B cells were increased, MBC frequencies were decreased and with the exception of TNF-α production, B cell responsiveness was restored to what was seen in uninfected children. These data show that S. haematobium infection leads to significant changes in the B cell compartment, both at the phenotypic and functional level

    Haemostatic changes in urogenital schistosomiasis haematobium: A case-control study in Gabonese schoolchildren

    Get PDF
    In many tropical areas schistosomiasis is a major health problem causing hepatosplenic, intestinal or urogenital complaints. Hepatosplenic schistosomiasis mansoni is also characterized by blood coagulation abnormalities. Liver pathology plays a role in the development of haemostatic changes and the parasitic infection may directly affect coagulation. However, these contributing factors cannot be studied separately in hepatosplenic schistosomiasis infections. This pilot study provides insight in haemostatic changes in urinary schistosomiasis by studying coagulation parameters in schistosomiasis haematobium-infected Gabonese schoolchildren. Selection on urinary schistosomiasis patients without hepatosplenic complaints allows for the investigation of the direct effects of the parasite on haemostasis. Levels of von Willebrand Factor (VWF) antigen, active VWF and osteoprotegerin were elevated, indicating inflammation-mediated endothelial activation. In contrast to hepatosplenic schistosomiasis, thrombin-antithrombin complex and D-dimer levels were not affected. Despite its small sample size, this study clearly indicates that Schistosoma haematobium directly alters the activation status of the endothelium, without initiation of coagulation

    Schistosoma haematobiuminfection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals

    Get PDF
    Infection with parasitic helminths has been reported to improve insulin sensitivity and glucose homeostasis, lowering the risk for type 2 diabetes. However, little is known about its impact on whole-body lipid homeostasis, especially in obese individuals. For this purpose, a cross-sectional study was carried out in lean and overweight/obese adults residing in the Lambarene region of Gabon, an area endemic forSchistosoma haematobium. Helminth infection status, peripheral blood immune cell counts, and serum metabolic and lipid/lipoprotein levels were analyzed. We found that urineS.haematobiumegg-positive individuals exhibited lower serum total cholesterol (TC; 4.42vs4.01 mmol/L, adjusted mean difference [95%CI] -0.30 [-0.68,-0.06]; P = 0.109), high-density lipoprotein (HDL)-C (1.44vs1.12 mmol/L, -0.24 [-0.43,-0.06]; P = 0.009) and triglyceride (TG; 0.93vs0.72 mmol/L, -0.20 [-0.39,-0.03]; P = 0.022) levels than egg-negative individuals. However, when stratified according to body mass index, these effects were only observed in overweight/obese infected individuals. Similarly, significant negative correlations between the intensity of infection, assessed by serum circulating anodic antigen (CAA) concentrations, and TC (r = -0.555; P<0.001), HDL-C (r = -0.327; P = 0.068), LDL-C (r = -0.396; P = 0.025) and TG (r = -0.381; P = 0.032) levels were found in overweight/obese individuals but not in lean subjects. Quantitative lipidomic analysis showed that circulating levels of some lipid species associated with cholesterol-rich lipoprotein particles were also significantly reduced in overweight/obese infected individuals in an intensity-dependent manner. In conclusion, we reported that infection withS.haematobiumis associated with improved lipid profile in overweight/obese individuals, a feature that might contribute reducing the risk of cardiometabolic diseases in such population.Author summary Infection with parasitic helminths has been reported to be beneficial for metabolic homeostasis by improving insulin sensitivity and lowering the risk for developing type 2 diabetes. Elevated circulating cholesterol and triglyceride levels associated with obesity are also risk factors for cardiometabolic diseases. In the framework of a cross-sectional study conducted in an endemic rural area, we have investigated the impact of infection withSchistosoma hematobiumon serum lipid homeostasis in adult individuals with a broad range of body weight. We found that helminth infection is associated with a lower serum total cholesterol (TC), high-density lipoprotein (HDL)-C and triglyceride (TG) levels, especially in overweight/obese individuals. Furthermore, significant negative correlations between the intensity of infection and TC, HDL-C, LDL-C and TG levels were also found in overweight/obese individuals but not in lean subjects. Altogether our study show for the first time that infection withSchistosoma hematobiumis associated with an improved serum lipid profile in overweight/obese humans, a feature that may contribute to protection against cardiometabolic diseases in such population. Further investigation is however required to elucidate the underlying molecular mechanisms.Host-parasite interactio

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study

    Get PDF
    Background Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field.Methods We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format.Findings From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC](serum)=0.98 [95% CI 0.95-1.00]; AUC(urine)=0.96 [0.93-0.99]), and MS3_01370 (AUCserum=0.93 [0.89-0.97]; AUC(urine)=0.81 [0.72-0.89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0.79 [0.69-0.90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%.Interpretation We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Host-parasite interactio

    A prospective, multi-site, cohort study to estimate incidence of infection and disease due to Lassa fever virus in West African countries (the Enable Lassa research programme)–Study protocol

    Get PDF
    Background Lassa fever (LF), a haemorrhagic illness caused by the Lassa fever virus (LASV), is endemic in West Africa and causes 5000 fatalities every year. The true prevalence and incidence rates of LF are unknown as infections are often asymptomatic, clinical presentations are varied, and surveillance systems are not robust. The aim of the Enable Lassa research programme is to estimate the incidences of LASV infection and LF disease in five West African countries. The core protocol described here harmonises key study components, such as eligibility criteria, case definitions, outcome measures, and laboratory tests, which will maximise the comparability of data for between-country analyses. Method We are conducting a prospective cohort study in Benin, Guinea, Liberia, Nigeria (three sites), and Sierra Leone from 2020 to 2023, with 24 months of follow-up. Each site will assess the incidence of LASV infection, LF disease, or both. When both incidences are assessed the LASV cohort (nmin = 1000 per site) will be drawn from the LF cohort (nmin = 5000 per site). During recruitment participants will complete questionnaires on household composition, socioeconomic status, demographic characteristics, and LF history, and blood samples will be collected to determine IgG LASV serostatus. LF disease cohort participants will be contacted biweekly to identify acute febrile cases, from whom blood samples will be drawn to test for active LASV infection using RT-PCR. Symptom and treatment data will be abstracted from medical records of LF cases. LF survivors will be followed up after four months to assess sequelae, specifically sensorineural hearing loss. LASV infection cohort participants will be asked for a blood sample every six months to assess LASV serostatus (IgG and IgM). Discussion Data on LASV infection and LF disease incidence in West Africa from this research programme will determine the feasibility of future Phase IIb or III clinical trials for LF vaccine candidates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A Pilot Study on Cytotoxic T Lymphocyte-4 Gene Polymorphisms in Urinary Schistosomiasis

    No full text
    Urinary schistosomiasis is caused by the digenetic trematode Schistosoma haematobium, characterized by accumulation of eggs in the genitourinary tract. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) can play an important role in parasitic infection due to its major role as a negative regulator of T-cell activation and proliferation. This study was performed in patients with schistosomiasis and healthy controls to analyze the allele and genotype frequencies of four CTLA-4 gene polymorphisms. The CTLA-4 gene was amplified using Taqman real-time polymerase chain reaction, and allele and genotypes of 49 patients with schistosomiasis were analyzed using allelic discrimination analysis followed by subsequent direct sequencing. The results were compared with healthy control subjects. The frequencies of CTLA-4 rs733618 A allele at position −1722 (p=0.001), rs11571316 C allele at position −1577 (p<0.001), and rs231775 A allele at position +49 (p=0.002) in the patient group were significantly higher than the control group. The rs733618 AA genotype (p=0.001), rs11571316 CC genotype (p<0.001), and rs231775 AA genotype (p=0.007) were also significantly overrepresented. Meanwhile, rs733618 AG genotype (p=0.001), rs11571316 CT genotype (p=0.02), and rs231775 GG genotype (p=0.029) were significantly decreased in the patients with schistosomiasis, as compared with the controls. No significant difference was observed in both allele and genotype of rs16841252. The results of this study suggest that the rs733618, rs11571316, and rs231775 polymorphisms in the CTLA-4 gene may influence susceptibility to schistosomiasis infection in the Gabonese children

    Attention: there is an inconsistency between android permissions and application metadata!

    Get PDF
    This is an accepted manuscript of an article published by Springer in International Journal of Information Security on 07/01/2021, available online: https://doi.org/10.1007/s10207-020-00536-1 The accepted version of the publication may differ from the final published version.Since mobile applications make our lives easier, there is a large number of mobile applications customized for our needs in the application markets. While the application markets provide us a platform for downloading applications, it is also used by malware developers in order to distribute their malicious applications. In Android, permissions are used to prevent users from installing applications that might violate the users’ privacy by raising their awareness. From the privacy and security point of view, if the functionality of applications is given in sufficient detail in their descriptions, then the requirement of requested permissions could be well-understood. This is defined as description-to-permission fidelity in the literature. In this study, we propose two novel models that address the inconsistencies between the application descriptions and the requested permissions. The proposed models are based on the current state-of-art neural architectures called attention mechanisms. Here, we aim to find the permission statement words or sentences in app descriptions by using the attention mechanism along with recurrent neural networks. The lack of such permission statements in application descriptions creates a suspicion. Hence, the proposed approach could assist in static analysis techniques in order to find suspicious apps and to prioritize apps for more resource intensive analysis techniques. The experimental results show that the proposed approach achieves high accuracy.Published onlin
    corecore