48 research outputs found

    Genetic variances, heritabilities and maternal effects on body weight, breast meat yield, meat quality traits and the shape of the growth curve in turkey birds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Turkey is an important agricultural species and is largely used as a meat bird. In 2004, turkey represented 6.5% of the world poultry meat production. The world-wide turkey population has rapidly grown due to increased commercial farming. Due to the high demand for turkey meat from both consumers and industry global turkey stocks increased from 100 million in 1970 to over 276 million in 2004. This rapidly increasing importance of turkeys was a reason to design this study for the estimation of genetic parameters that control body weight, body composition, meat quality traits and parameters that shape the growth curve in turkey birds.</p> <p>Results</p> <p>The average heritability estimate for body weight traits was 0.38, except for early weights that were strongly affected by maternal effects. This study showed that body weight traits, upper asymptote (a growth curve trait), percent breast meat and redness of meat had high heritability whereas heritabilities of breast length, breast width, percent drip loss, ultimate pH, lightness and yellowness of meat were medium to low. We found high positive genetic and phenotypic correlations between body weight, upper asymptote, most breast meat yield traits and percent drip loss but percent drip loss was found strongly negatively correlated with ultimate pH. Percent breast meat, however, showed genetic correlations close to zero with body weight traits and upper asymptote.</p> <p>Conclusion</p> <p>The results of this analysis and the growth curve from the studied population of turkey birds suggest that the turkey birds could be selected for breeding between 60 and 80 days of age in order to improve overall production and the production of desirable cuts of meat. The continuous selection of birds within this age range could promote high growth rates but specific attention to meat quality would be needed to avoid a negative impact on the quality of meat.</p

    A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The turkey (<it>Meleagris gallopavo</it>) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions.</p> <p>Results</p> <p>Eighteen full sib families, comprising 1008 (35 F1 and 973 F2) birds, were genotyped for 775 single nucleotide polymorphisms (SNPs). Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM) with the largest linkage group (81 loci) measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species.</p> <p>Conclusion</p> <p>Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.</p

    Confirmation of quantitative trait loci affecting fatness in chickens

    Get PDF
    In this report we describe the analysis of an advanced intercross line (AIL) to confirm the quantitative trait locus (QTL) regions found for fatness traits in a previous study. QTL analysis was performed on chromosomes 1, 3, 4, 15, 18, and 27. The AIL was created by random intercrossing in each generation from generation 2 (G2) onwards until generation 9 (G9) was reached. QTL for abdominal fat weight (AFW) and/or percentage abdominal fat (AF%) on chromosomes 1, 3 and 27 were confirmed in the G9 population. In addition, evidence for QTL for body weight at the age of 5 (BW5) and 7 (BW7) weeks and for the percentage of intramuscular fat (IF%) were found on chromosomes 1, 3, 15, and 27. Significant evidence for QTL was detected on chromosome 1 for BW5 and BW7. Suggestive evidence was found on chromosome 1 for AFW, AF% and IF%, on chromosome 15 for BW5, and on chromosome 27 for AF% and IF%. Furthermore, evidence on the chromosome-wise level was found on chromosome 3 for AFW, AF%, and BW7 and on chromosome 27 for BW5. For chromosomes 4 and 18, test statistics did not exceed the significance threshold

    The wild species genome ancestry of domestic chickens.

    Get PDF
    BACKGROUND: Hybridisation and introgression play key roles in the evolutionary history of animal species. They are commonly observed within several orders in wild birds. The domestic chicken Gallus gallus domesticus is the most common livestock species. More than 65 billion chickens are raised annually to produce meat and 80 million metric tons of egg for global human consumption by the commercial sector. Unravelling the origin of its genetic diversity has major application for sustainable breeding improvement programmes. RESULTS: In this study, we report genome-wide analyses for signatures of introgression between indigenous domestic village chicken and the four wild Gallus species. We first assess the genome-wide phylogeny and divergence time across the genus Gallus. Genome-wide sequence divergence analysis supports a sister relationship between the Grey junglefowl G. sonneratii and Ceylon junglefowl G. lafayettii. Both species form a clade that is sister to the Red junglefowl G. gallus, with the Green junglefowl G. varius the most ancient lineage within the genus. We reveal extensive bidirectional introgression between the Grey junglefowl and the domestic chicken and to a much lesser extent with the Ceylon junglefowl. We identify a single case of Green junglefowl introgression. These introgressed regions include genes with biological functions related to development and immune system. CONCLUSIONS: Our study shows that while the Red junglefowl is the main ancestral species, introgressive hybridisation episodes have impacted the genome and contributed to the diversity of the domestic chicken, although likely at different levels across its geographic range

    Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values

    Get PDF
    The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction

    The development and characterization of a 60K SNP chip for chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important.</p> <p>Results</p> <p>We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly.</p> <p>Conclusions</p> <p>The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.</p

    Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken (<it>Gallus gallus</it>), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of ~1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs).</p> <p>Results</p> <p>At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r<sup>2 </sup>for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb.</p> <p>Conclusion</p> <p>Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.</p

    Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation within individual genomes ranges from single nucleotide polymorphisms (SNPs) to kilobase, and even megabase, sized structural variants (SVs), such as deletions, insertions, inversions, and more complex rearrangements. Although much is known about the extent of SVs in humans and mice, species in which they exert significant effects on phenotypes, very little is known about the extent of SVs in the 2.5-times smaller and less repetitive genome of the chicken.</p> <p>Results</p> <p>We identified hundreds of shared and divergent SVs in four commercial chicken lines relative to the reference chicken genome. The majority of SVs were found in intronic and intergenic regions, and we also found SVs in the coding regions. To identify the SVs, we combined high-throughput short read paired-end sequencing of genomic reduced representation libraries (RRLs) of pooled samples from 25 individuals and computational mapping of DNA sequences from a reference genome.</p> <p>Conclusion</p> <p>We provide a first glimpse of the high abundance of small structural genomic variations in the chicken. Extrapolating our results, we estimate that there are thousands of rearrangements in the chicken genome, the majority of which are located in non-coding regions. We observed that structural variation contributes to genetic differentiation among current domesticated chicken breeds and the Red Jungle Fowl. We expect that, because of their high abundance, SVs might explain phenotypic differences and play a role in the evolution of the chicken genome. Finally, our study exemplifies an efficient and cost-effective approach for identifying structural variation in sequenced genomes.</p

    Signatures of Selection in the Genomes of Commercial and Non-Commercial Chicken Breeds

    Get PDF
    Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density SNP chips or massively parallel sequencing, have been successfully applied to identify evidence for selective sweeps in chicken, it has been difficult to distinguish patterns of selection and stochastic and breed specific effects. Here we present a study to identify selective sweeps in a large number of chicken breeds (67 in total) using a high-density (58 K) SNP chip. We analyzed commercial chickens representing all major breeding goals. In addition, we analyzed non-commercial chicken diversity for almost all recognized traditional Dutch breeds and a selection of representative breeds from China. Based on their shared history or breeding goal we in silico grouped the breeds into 14 breed groups. We identified 396 chromosomal regions that show suggestive evidence of selection in at least one breed group with 26 of these regions showing strong evidence of selection. Of these 26 regions, 13 were previously described and 13 yield new candidate genes for performance traits in chicken. Our approach demonstrates the strength of including many different populations with similar, and breed groups with different selection histories to reduce stochastic effects based on single populations
    corecore