19 research outputs found

    One year after ICU admission for severe community-acquired pneumonia of bacterial, viral or unidentified etiology. What are the outcomes?

    No full text
    IntroductionMultiplex polymerase chain reaction (mPCR) for respiratory virus testing is increasingly used in community-acquired pneumonia (CAP), however data on one-year outcome in intensive care unit (ICU) patients with reference to the causative pathogen are scarce.Materials and methodsWe performed a single-center retrospective study in 123 ICU patients who had undergone respiratory virus testing for CAP by mPCR and with known one-year survival status. Functional status including dyspnea (mMRC score), autonomy (ADL Katz score) and need for new home-care ventilatory support was assessed at a one-year post-ICU follow-up. Mortality rates and functional status were compared in patients with CAP of a bacterial, viral or unidentified etiology one year after ICU admission.ResultsThe bacterial, viral and unidentified groups included 19 (15.4%), 37 (30.1%), and 67 (54.5%) patients, respectively. In multivariate analysis, one-year mortality in the bacterial group was higher compared to the viral group (HR 2.92, 95% CI 1.71-7.28, p = 0.02) and tended to be higher compared to the unidentified etiology group (p = 0.06); but no difference was found between the viral and the unidentified etiology group (p = 0.43). In 64/83 one-year survivors with a post-ICU follow-up consultation, there were no differences in mMRC score, ADL Katz score and new home-care ventilatory support between the groups (p = 0.52, p = 0.37, p = 0.24, respectively). Severe dyspnea (mMRC score = 4 or death), severe autonomy deficiencies (ADL Katz score ≤ 2 or death), and major adverse respiratory events (new home-care ventilatory support or death) were observed in 52/104 (50.0%), 47/104 (45.2%), and 65/104 (62.5%) patients, respectively; with no difference between the bacterial, viral and unidentified group: p = 0.58, p = 0.06, p = 0.61, respectively.ConclusionsCAP of bacterial origin had a poorer outcome than CAP of viral or unidentified origin. At one-year, impairment of functional status was frequently observed, with no difference according to the etiology

    Hypercoagulability in critically ill patients with COVID 19, an observational prospective study

    No full text
    Objective COVID 19 is often associated with hypercoagulability and thromboembolic (TE) events. The aim of this study was to assess the characteristics of hypercoagulability and its relationship with new-onset TE events and the composite outcome of need for intubation and/or death in intensive care unit (ICU) patients admitted for COVID. Design Prospective observational study. Setting Monocentric, intensive care, University Hospital of Clermont Ferrand, France. Patients Patients admitted to intensive care from January 2020 to May 2021 for COVID-19 pneumonia. Interventions Standard hemostatic tests and rotational thromboelastometry (ROTEM) were performed on admission and on day 4. Hypercoagulability was defined by at least one of the following criteria: D-dimers > 3000 μg/dL, fibrinogen > 8 g/L, EXTEM CFT below the normal range, EXTEM A5, MCF, Li 60 above the normal range, and EXTEM G-score ((5000 x MCF) / (100-MCF)) ≥ 11 dyne/cm 2 . Measurements and main results Of the 133 patients included, 17 (12.7%) developed new-onset TE events, and 59 (44.3%) required intubation and/or died in the ICU. ROTEM was performed in 133 patients on day 1 and in 67 on day 4. Hypercoagulability was present on day 1 in 115 (86.4%) patients. None of the hypercoagulability indices were associated with subsequent new-onset TE events on days 1 and 4 nor with the need for intubation and/or ICU death. Hyperfibrinogenemia > 8g/dL, higher D-dimers and higher EXTEM Li 60 on day 4 were predictive of need for intubation and/or of ICU death. Conclusions Our study confirmed that most COVID-19 ICU patients have hypercoagulability on admission and almost all on day 4. Hyperfibrinogenemia or fibrinolysis shutdown on day 4 were associated with unfavorable outcome

    Epidemiology and Outcome of Early-Onset Acute Kidney Injury and Recovery in Critically Ill COVID-19 Patients: A Retrospective Analysis

    No full text
    Background: The clinical significance of early-onset acute kidney injury (EO-AKI) and recovery in severe COVID-19 intensive care unit (ICU) patients is poorly documented. Objective: The aim of the study was to assess the epidemiology and outcome of EO-AKI and recovery in ICU patients admitted for SARS-CoV-2 pneumonia. Design: This was a retrospective single-centre study. Setting: The study was carried out at the medical ICU of the university hospital of Clermont-Ferrand, France. Patients: All consecutive adult patients aged ≥18 years admitted between 20 March 2020 and 31 August 2021 for SARS-CoV-2 pneumonia were enrolled. Patients with chronic kidney disease, referred from another ICU, and with an ICU length of stay (LOS) ≤72 h were excluded. Interventions: EO-AKI was defined on the basis of serum creatinine levels according to the Kidney Disease Improving Global Outcomes criteria, developing ≤7 days. Depending on renal recovery, defined by the normalization of serum creatinine levels, EO-AKI was transient (recovery within 48 h), persistent (recovery between 3 and 7 days) or AKD (no recovery within 7 days after EO-AKI onset). Measurements: Uni- and multivariate analyses were performed to determine factors associated with EO-AKI and EO-AKI recovery. Main Results: EO-AKI occurred in 84/266 (31.5%) study patients, of whom 42 (50%), 17 (20.2%) and 25 (29.7%) had EO-AKI stages 1, 2 and 3, respectively. EO-AKI was classified as transient, persistent and AKD in 40 (47.6%), 15 (17.8%) and 29 (34.6%) patients, respectively. The 90-day mortality was 87/244 (35.6%) and increased with EO-AKI occurrence and severity: no EO-AKI, 38/168 (22.6%); EO-AKI stage 1, 22/39 (56.4%); stage 2, 9/15 (60%); and stage 3, 18/22 (81.8%) (p p < 0.01). MAKE-90 occurred in 42.6% of all patients. Conclusions: In ICU patients admitted for SARS-CoV-2 pneumonia, the development of EO-AKI and time to recovery beyond day 7 of onset were associated with poor outcome

    Coefficient correlation matrix between indices of hypercoagulability and inflammatory parameters.

    No full text
    CRP: C reactive protein; Fg: Fibrinogen; E: EXTEM; CFT: Clot formation time; A5: Clot amplitude at 5 minutes; MCF: Maximum clot firmness; Li60: Lysis index at 60 minutes. (DOCX)</p

    Association of nitrogen balance trajectories with clinical outcomes in critically ill COVID-19 patients: A retrospective cohort study

    No full text
    International audienceackground & aims: The intensity and duration of the catabolic phase in COVID-19 patients can differ between survivors and non-survivors. The purpose of the study was to assess the determinants of, and association between, nitrogen balance trajectories and outcome in critically ill COVID-19 patients. Methods: This retrospective monocentric observational study involved patients admitted to the intensive care unit (ICU) of the University Hospital of Clermont Ferrand, France, from January 2020 to May 2021 for COVID-19 pneumonia. Patients were excluded if referred from another ICU, if their ICU length of stay was <72 h, or if they were treated with renal replacement therapy during the first seven days after ICU admission. Data were collected prospectively at admission and during ICU stay. Death was recorded at the end of ICU stay. Comparisons of the time course of nitrogen balance according to outcome were analyzed using two-way ANOVA. At days 3, 5, 7, 10 and 14, uni- and multivariate logistic regression analyses were performed to assess the impact of a non-negative nitrogen-balance on ICU death. To investigate the relationships between nitrogen balance, inflammatory markers and protein intake, linear and non-nonlinear models were run at days 3, 5 and 7, and the amount of protein intake necessary to reach a neutral nitrogen balance was calculated. Subgroup analyses were carried out according to BMI, age, and sex. Results: 99 patients were included. At day 3, a similar negative nitrogen balance was observed in survivors and non-survivors: -16.4 g/d [-26.5, -3.3] and -17.3 g/d [-22.2, -3.8] (p = 0.54). The trajectories of nitrogen balance over time thus differed between survivors and non-survivors (p = 0.01). In survivors, nitrogen balance increased over time, but decreased from day 2 to day 6 in non-survivors, and thereafter increased slowly up to day 14. At days 5 and 7, a non-negative nitrogen-balance was protective from death. Administering higher protein amounts was associated with higher nitrogen balance. Conclusion: We report a prolonged catabolic state in COVID patients that seemed more pronounced in non-survivors than in survivors. Our study underlines the need for monitoring urinary nitrogen excretion to guide the amount of protein intake required by COVID-19 patients. (c) 2022 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism

    Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP) in patients with acute exacerbation of COPD: From the French OUTCOMEREA cohort

    No full text
    Abstract Background Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP), a nosocomial pneumonia that is not related to invasive mechanical ventilation (IMV), has been less studied than ventilator-associated pneumonia, and never in the context of patients in an ICU for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD), a common cause of ICU admission. This study aimed to determine the factors associated with NV-ICU-AP occurrence and assess the association between NV-ICU-AP and the outcomes of these patients. Methods Data were extracted from the French ICU database, OutcomeRea™. Using survival analyses with competing risk management, we sought the factors associated with the occurrence of NV-ICU-AP. Then we assessed the association between NV-ICU-AP and mortality, intubation rates, and length of stay in the ICU. Results Of the 844 COPD exacerbations managed in ICUs without immediate IMV, NV-ICU-AP occurred in 42 patients (5%) with an incidence density of 10.8 per 1,000 patient-days. In multivariate analysis, prescription of antibiotics at ICU admission (sHR, 0.45 [0.23; 0.86], p = 0.02) and no decrease in consciousness (sHR, 0.35 [0.16; 0.76]; p < 0.01) were associated with a lower risk of NV-ICU-AP. After adjusting for confounders, NV-ICU-AP was associated with increased 28-day mortality (HR = 3.03 [1.36; 6.73]; p < 0.01), an increased risk of intubation (csHR, 5.00 [2.54; 9.85]; p < 0.01) and with a 10-day increase in ICU length of stay (p < 0.01). Conclusion We found that NV-ICU-AP incidence reached 10.8/1000 patient-days and was associated with increased risks of intubation, 28-day mortality, and longer stay for patients admitted with AECOPD
    corecore