48 research outputs found

    Application of MD Simulations to Predict Membrane Properties of MOFs

    No full text
    Metal organic frameworks (MOFs) are a new group of nanomaterials that have been widely examined for various chemical applications. Gas separation using MOF membranes has become an increasingly important research field in the last years. Several experimental studies have shown that thin-film MOF membranes can outperform well known polymer and zeolite membranes due to their higher gas permeances and selectivities. Given the very large number of available MOF materials, it is impractical to fabricate and test the performance of every single MOF membrane using purely experimental techniques. In this study, we used molecular simulations, Monte Carlo and Molecular Dynamics, to estimate both single-gas and mixture permeances of MOF membranes. Predictions of molecular simulations were compared with the experimental gas permeance data of MOF membranes in order to validate the accuracy of our computational approach. Results show that computational methodology that we described in this work can be used to accurately estimate membrane properties of MOFs prior to extensive experimental efforts

    Application of MD Simulations to Predict Membrane Properties of MOFs

    No full text
    Metal organic frameworks (MOFs) are a new group of nanomaterials that have been widely examined for various chemical applications. Gas separation using MOF membranes has become an increasingly important research field in the last years. Several experimental studies have shown that thin-film MOF membranes can outperform well known polymer and zeolite membranes due to their higher gas permeances and selectivities. Given the very large number of available MOF materials, it is impractical to fabricate and test the performance of every single MOF membrane using purely experimental techniques. In this study, we used molecular simulations, Monte Carlo and Molecular Dynamics, to estimate both single-gas and mixture permeances of MOF membranes. Predictions of molecular simulations were compared with the experimental gas permeance data of MOF membranes in order to validate the accuracy of our computational approach. Results show that computational methodology that we described in this work can be used to accurately estimate membrane properties of MOFs prior to extensive experimental efforts

    Restructuring of poly(2-ethyl-2-oxazoline)/tannic acid multilayers into fibers

    No full text
    H-Bonded, pH-responsive poly(2-ethyl-2-oxazoline) (PEOX) and tannic acid (TA) multilayers were prepared by layer-by-layer deposition. Free-floating PEOX/TA multilayers were shown to restructure in a pH3 phosphate buffer solution to H-bonded, pH-responsive PEOX/TA fibers. This restructuring was also evident during the growth of multilayers thicker than 15 bilayers (BL). The growth profile of 30 BL-thick films showed a significant decrease in the film thickness from 118 nm to 85 nm between 15 BL and 20 BL, after which the growth trend was regained with some small fluctuations. This decrease was associated with the detachment of film patches from the top surface of the film. The rinse solutions consisted of fibrous aggregates, which were formed by the restructuring of the detached multilayer patches. These fibers were characterized by TGA, XPS, FTIR and SEM measurements which showed that the fibers consisted of H-bonded PEOX and TA molecules. As such, the fibers were pH-responsive and disintegrated at pH > 8.5. Scanning electron microscopy images indicated that the fibers might have been formed by the curling of planar LbL film patches and the dried fibers looked like collapsed hollow tubes on solid substrates. These results contribute to our understanding of the stability of LbL films in various chemical conditions and the ways to modify the morphology of self-assembled structures. pH-responsive fibrous aggregates are important in a variety of biomedical applications, from controlled release to sensors
    corecore