14 research outputs found

    An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers

    No full text
    Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer’s disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound <b>12</b> possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound <b>7</b> significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand’s in vivo physiological effects

    A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2: A Bivalent Advantage

    No full text
    Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-N

    Comparative in Vivo Investigation of Intrathecal and Intracerebroventricular Administration with Melanocortin Ligands MTII and AGRP into Mice

    No full text
    Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord. Herein, we investigate comparative IT and ICV administration of two melanocortin ligands, the synthetic MTII (Ac-Nle-c­[Asp-His-DPhe-Arg-Trp-Lys]-NH<sub>2</sub>) MC4R agonist and agouti-related peptide [AGRP­(87-132)] MC4R inverse agonist/antagonist, on the same batch of age-matched mice in TSE metabolic cages undergoing a nocturnal satiated paradigm. To our knowledge, this is the first study to test how central administration of these ligands directly to the spinal cord affects energy homeostasis. Results showed, as expected, that MTII IT administration caused a decrease in food and water intake and an overall negative energy balance without affecting activity. As anticipated, IT administration of AGRP caused weight gain, increase of food/water intake, and increase respiratory exchange ratio (RER). Unexpectantly, the prolonged activity of AGRP was notably shorter (2 days) compared to mice given ICV injections of the same concentrations in previous studies (7 days or more).− It appears that IT administration results in a more sensitive response that may be a good approach for testing synthetic compound potency values ranging in nanomolar to high micromolar in vitro EC<sub>50</sub> values. Indeed, our investigation reveals that the spine influences a different melanocortin response compared to the brain for the AGRP ligand. This study indicates that IT administration can be a useful technique for future metabolic studies using melanocortin ligands and highlights the importance of exploring the role of melanocortin receptors in the spinal cord

    Ac-Trp-DPhe(p-I)-Arg-Trp-NH<sub>2</sub>, a 250-Fold Selective Melanocortin‑4 Receptor (MC4R) Antagonist over the Melanocortin‑3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently

    No full text
    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe­(p-I)-Arg-Trp-NH<sub>2</sub>, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice’s food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7

    A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH<sub>2</sub> versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH<sub>2</sub>: A Bivalent Advantage

    No full text
    Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH<sub>2</sub>, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH<sub>2</sub>, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2–8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (<i>p</i> < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (<i>T</i><sub>1/2</sub> = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand’s unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice’s body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy

    Human β‑Defensin 1 and β‑Defensin 3 (Mouse Ortholog mBD14) Function as Full Endogenous Agonists at Select Melanocortin Receptors

    No full text
    β-Defensin 3 (BD3) was identified as a ligand for the melanocortin receptors (MCRs) in 2007, although the pharmacology activity of BD3 has not been clearly elucidated. Herein, it is demonstrated that human BD3 and mouse BD3 are full micromolar agonists at the MCRs. Furthermore, mouse β-defensin 1 (BD1) and human BD1 are also MCR micromolar agonists. This work identifies BD1 as an endogenous MCR ligand and clarifies the controversial role of BD3 as a micromolar agonist

    Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area

    No full text
    International audienceBrain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VIA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VIA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations

    Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area

    No full text
    International audienceBrain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VIA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VIA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations
    corecore