39 research outputs found

    Detection of Multidrug-Resistant Acinetobacter baumannii among Gram-Negative Bacteria Isolated from Clinical Samples

    Get PDF
    Acinetobacter baumannii is an aerobic, Gram -negative cocco-bacilli, non-fermentative, non-motile, and non-fastidious organism belonging to the genus Acinetobacter. The A. baumannii has emerged as a worldwide nosocomial pathogen causing about 80%25 of nosocomial infections comprising ventilator-acquired pneumonia, bacteremia, meningitis, urinary tract infections, skin and soft tissues infections associated with high mortality rate of approximately 63.3%25. Although literature shows sufficient information about the drug resistant A. baumannii, there has been inadequate reports on the antibiotic resistance level of this bacterium in the study area. The aim of this research was to detect Multidrug-resistant A. baumannii isolates among Gram-negative bacteria isolated from Federal Teaching Hospital, Gombe, Nigeria. A total of 1008 clinical samples were collected and cultured on MacConkey agar and Blood agar plates at 37o C for 18-24 hours. Following the incubation period, discrete colonies obtained were subjected to Gram staining. The Gram-negative isolates were identified based on conventional biochemical tests with further use of VITEK 2 COMPACT (BioMĂ©rieux, France) for confirmation of A. baumannii amongst the Gram-negative organisms. The results obtained showed that 263 Gram-negative organisms were isolated. A. baumannii accounted for 8.5%25 prevalence. Most of the A. baumannii isolated were from the male patients (75%25) within the age range of 33-48 years. Antibiotic susceptibility test using Kirby Bauer method in accordance with CLSI guidelines was done on 20 A. baumannii isolates. The isolates were more sensitive to levofloxacin (60%25), followed by Gentamicin (55%25), then Ciprofloxacin and Tetracycline (50%25) respectively. High level of resistance to Ceftriaxone (80%25), Cefepime (75%25), Ceftazidime (65%25), Piperacillin-Tazobactam (55%25), Ampicillin%252FSulbactam (60%25), Tigecycline (60%25), Meropenem (55%25) and Amikacin (60%25). This study revealed that 15 (75%25) of the A. baumannii were found to be multidrug-resistant. Therefore, antibiotic stewardship is necessary to combat further dissemination of this organism

    Growth and yield components of some groundnut (Arachis hypogaea L.) cultivars infected with blackeye cowpea mosaic virus

    Get PDF
    Blackeye cowpea mosaic virus (BlCMV) is a major virus, infecting legumes with attendant huge losses. Cultivation of resistant varieties is the most effective and sustainable control strategy. Therefore, some groundnut (Arachis hypogaea) cultivars were evaluated against BlCMV in Minna, Southern Guinea savanna zone of Nigeria. The experiment was conducted at the Teaching and Research Farm, Federal University of Technology, Minna. It was arranged as infected and uninfected using Randomised Complete Block Design (RCBD) with three replications. Groundnut seeds were sowed in the second week of August, 2015. Seedlings were inoculated by sap transmission at 10 days after sowing. Disease incidence, severity, growth and yield attributes were recorded. Data were subjected to analysis of variance (ANOVA) and means separated at p≀0.05 probability level. Disease incidence varied significantly p<0.05 from 28.3 to 60.3 % at one week after inoculation (WAI) and 44.7 to 100 % at 2 WAI. ICGV 91317 which expressed mild infection (symptom score = 2) at 9 WAI also exhibited the lowest leaf diameter reduction (3.6 %) at that growth stage. FDRF7-82 which had the lowest reduction in number of leaves per plant at 3 and 6WAI (10.7 and 9.6 %, respectively) also exhibited the lowest reduction in fresh haulm weight per plant (42.2 %). None of the cultivars exhibited consistent reactions, FDRF7-82 and ICGV 91317 had an appreciable combination of growth and yield attributes under BlCMV infection. However, these cultivars could be improved upon either through conventional or molecular breeding by coding with desirable genes. The cultivars which were adversely affected by BlCMV disease could so be improved genetically through appropriate gene introgression from the resistant cultivars.Keywords: Blackeye cowpea mosaic virus; disease incidence and severity; growth and yield; groundnu

    Evaluation of Antibacterial Potency of Endophytic Fungi Isolated from Mentha piperita

    Get PDF
    The Mentha piperita is an aromatic perennial herb, a member of the family Lamiaceae (Labiatae) that produces creeping stolons, growing in the range of 45 to 80 cm tall. Fungal endophytes reside in the healthy plant tissues to produce several metabolic products such as plants growth hormones, anti-phagocytes to biological feeding, medicinal ingredients, and many products of biological activities. Hence, they are regarded as a reservoir of active metabolites for the development of novel drugs. Although, many endophytic fungi have been reported from different plants, reports on fungal endophytes from M. piperita are very limited. In this study, fungal endophytes from the leaf and stem of M. piperita were successfully evaluated for their potential antibacterial properties. Healthy leaves of the peppermint were prepared and cultured on potato dextrose agar (PDA) plates for 5 to 7 days at 28 oC until fungal colonies appeared. Fifteen (15) fungal isolates were identified based on cultural and morphological characteristics and had six (6) rapid growing species, namely Aspergillus fumigatus, Rhizopus arrhizus, Aspergillus flavus, Fusarium oxysporum, Aspergillus niger, Alternaria alternate which were selected and evaluated their crude metabolites against c using agar well diffusion method. The susceptibility study showed a remarkable in vitro antibacterial activity of the fungal crude metabolites against all the test bacteria which increased with an increased incubation time of 7, 14 and 21 days incubation. However, the fungi displayed maximal zone of growth inhibition after 21 days of incubation. In conclusion, fungal endophytes were isolated from M. piperita and evaluated in vitro antibacterial activity of their crude metabolites against the test bacterial isolates

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0Ăąïżœïżœ59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3Ăąïżœïżœ5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health OrganizationĂąïżœïżœs median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99 of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40 and wasting to less than 5 by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications. © 2020, The Author(s)

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2‱72 (95% uncertainty interval [UI] 2‱66–2‱79) in 2000 to 2‱31 (2‱17–2‱46) in 2019. Global annual livebirths increased from 134‱5 million (131‱5–137‱8) in 2000 to a peak of 139‱6 million (133‱0–146‱9) in 2016. Global livebirths then declined to 135‱3 million (127‱2–144‱1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2‱1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27‱1% (95% UI 26‱4–27‱8) of global livebirths. Global life expectancy at birth increased from 67‱2 years (95% UI 66‱8–67‱6) in 2000 to 73‱5 years (72‱8–74‱3) in 2019. The total number of deaths increased from 50‱7 million (49‱5–51‱9) in 2000 to 56‱5 million (53‱7–59‱2) in 2019. Under-5 deaths declined from 9‱6 million (9‱1–10‱3) in 2000 to 5‱0 million (4‱3–6‱0) in 2019. Global population increased by 25‱7%, from 6‱2 billion (6‱0–6‱3) in 2000 to 7‱7 billion (7‱5–8‱0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58‱6 years (56‱1–60‱8) in 2000 to 63‱5 years (60‱8–66‱1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990Ăąïżœïżœ2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 riskĂąïżœïżœoutcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 riskĂąïżœïżœoutcome pairs included in GBD 2017 no longer met inclusion criteria and 47 riskĂąïżœïżœoutcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51Ăąïżœïżœ12·1) deaths (19·2% 16·9Ăąïżœïżœ21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12Ăąïżœïżœ9·31) deaths (15·4% 14·6Ăąïżœïżœ16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253Ăąïżœïżœ350) DALYs (11·6% 10·3Ăąïżœïżœ13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0Ăąïżœïżœ9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10Ăąïżœïżœ24 years, alcohol use for those aged 25Ăąïżœïżœ49 years, and high systolic blood pressure for those aged 50Ăąïżœïżœ74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore