3,044 research outputs found

    The Future of Global Health Education: Training for Equity in Global Health

    Get PDF
    Background: Among academic institutions in the United States, interest in global health has grown substantially: by the number of students seeking global health opportunities at all stages of training, and by the increase in institutional partnerships and newly established centers, institutes, and initiatives to house global health programs at undergraduate, public health and medical schools. Witnessing this remarkable growth should compel health educators to question whether the training and guidance that we provide to students today is appropriate, and whether it will be applicable in the next decade and beyond. Given that “global health” did not exist as an academic discipline in the United States 20 years ago, what can we expect it will look like 20 years from now and how can we prepare for that future? Discussion: Most clinicians and trainees today recognize the importance of true partnership and capacity building in both directions for successful international collaborations. The challenge is in the execution of these practices. There are projects around the world where this is occurring and equitable partnerships have been established. Based on our experience and observations of the current landscape of academic global health, we share a perspective on principles of engagement, highlighting instances where partnerships have thrived, and examples of where we, as a global community, have fallen short. Conclusions: As the world moves beyond the charity model of global health (and its colonial roots), it is evident that the issue underlying ethical global health practice is partnership and the pursuit of health equity. Thus, achieving equity in global health education and practice ought to be central to our mission as educators and advisors when preparing trainees for careers in this field. Seeking to eliminate health inequities wherever they are ingrained will reveal the injustices around the globe and in our own cities and towns

    Single spin asymmetries in DIS

    Get PDF
    We consider possible mechanisms for single spin asymmetries in inclusive Deep Inelastic Scattering (DIS) processes with unpolarized leptons and transversely polarized nucleons. Tests for the effects of non-zero \bfk_\perp, for the properties of spin dependent quark fragmentations and for quark helicity conservation are suggested.Comment: 5 pages, LaTeX, no figures. Revised version, to be published in Phys. Rev. D. Some equations and statements added to clarify text and notation

    On the K^+D Interaction at Low Energies

    Full text link
    The Kd reactions are considered in the impulse approximation with NN final-state interactions (NN FSI) taken into account. The realistic parameters for the KN phase shifts are used. The "quasi-elastic" energy region, in which the elementary KN interaction is predominantly elastic, is considered. The theoretical predictions are compared with the data on the K^+d->K^+pn, K^+d->K^0pp, K^+d->K^+d and K^+d total cross sections. The NN FSI effect in the reaction K^+d->K^+pn has been found to be large. The predictions for the Kd cross sections are also given for slow kaons, produced from phi(1020) decays, as the functions of the isoscalar KN scattering length a_0. These predictions can be used to extract the value of a_0 from the data.Comment: 22 pages, 5 figure

    The universal Glivenko-Cantelli property

    Full text link
    Let F be a separable uniformly bounded family of measurable functions on a standard measurable space, and let N_{[]}(F,\epsilon,\mu) be the smallest number of \epsilon-brackets in L^1(\mu) needed to cover F. The following are equivalent: 1. F is a universal Glivenko-Cantelli class. 2. N_{[]}(F,\epsilon,\mu)0 and every probability measure \mu. 3. F is totally bounded in L^1(\mu) for every probability measure \mu. 4. F does not contain a Boolean \sigma-independent sequence. It follows that universal Glivenko-Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.Comment: 26 page

    Debris-Collecting Vacuum Machine with Grounded Safety System and Associated Methods

    Get PDF
    A debris collection machine includes a vacuum system (including a suction source operable to provide suction for pulling debris into a receptacle), a ground reference portion, a ground test portion, and a ground-checking module. The ground reference portion is electrically coupled with an electrically grounded reference point, and the ground test portion is electrically coupled with a portion of the vacuum system. The ground-checking module determines a resistance between from the ground reference portion and the ground test portion and prevents or terminates operation of the suction source of the vacuum system when the resistance exceeds a predetermined threshold value, e.g., which may correspond to a risk condition of spark generation that could ignite material in the receptacle

    IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of The Antibody Society: December 5–9, 2010, San Diego, CA USA

    Get PDF
    The 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics international conferences, and the 2010 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, was held December 5–9, 2010 in San Diego, CA. The conferences featured over 100 presentations and 100 posters, and included a pre-conference workshop on deep-sequencing of antibody genes. The total number of delegates exceeded 800, which set a new attendance record for the conference

    Children's Medicines in Tanzania: A National Survey of Administration Practices and Preferences.

    Get PDF
    The dearth of age-appropriate formulations of many medicines for children poses a major challenge to pediatric therapeutic practice, adherence, and health care delivery worldwide. We provide information on current administration practices of pediatric medicines and describe key stakeholder preferences for new formulation characteristics. We surveyed children aged 6-12 years, parents/caregivers over age 18 with children under age 12, and healthcare workers in 10 regions of Tanzania to determine current pediatric medicine prescription and administration practices as well as preferences for new formulations. Analyses were stratified by setting, pediatric age group, parent/caregiver education, and healthcare worker cadre. Complete data were available for 206 children, 202 parents/caregivers, and 202 healthcare workers. Swallowing oral solid dosage forms whole or crushing/dissolving them and mixing with water were the two most frequently reported methods of administration. Children frequently reported disliking medication taste, and many had vomited doses. Healthcare workers reported medicine availability most significantly influences prescribing practices. Most parents/caregivers and children prefer sweet-tasting medicine. Parents/caregivers and healthcare workers prefer oral liquid dosage forms for young children, and had similar thresholds for the maximum number of oral solid dosage forms children at different ages can take. There are many impediments to acceptable and accurate administration of medicines to children. Current practices are associated with poor tolerability and the potential for under- or over-dosing. Children, parents/caregivers, and healthcare workers in Tanzania have clear preferences for tastes and formulations, which should inform the development, manufacturing, and marketing of pediatric medications for resource-limited settings

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general
    corecore