66,007 research outputs found

    Asymmetric Avalanches in the Condensate of a Zeeman-limited Superconductor

    Full text link
    We report the non-equilibrium behavior of disordered superconducting Al films in high Zeeman fields. We have measured the tunneling density of states of the films through the first-order Zeeman critical field transition. We find that films with sheet resistances of a few hundred ohms exhibit large avalanche-like collapses of the condensate on the superheating branch of the critical field hysteresis loop. In contrast, the transition back into the superconducting phase (i.e., along the supercooling branch) is always continuous. The fact that the condensate follows an unstable trajectory to the normal state suggests that the order parameter in the hysteretic regime is not homogeneous.Comment: 5 pages, 5 figures, to appear in PR

    A non-monotonic constitutive model is not necessary to obtain shear banding phenomena in entangled polymer solutions

    Get PDF
    In 1975 Doi and Edwards predicted that entangled polymer melts and solutions can have a constitutive instability, signified by a decreasing stress for shear rates greater than the inverse of the reptation time. Experiments did not support this, and more sophisticated theories incorporated Marrucci's idea (1996) of removing constraints by advection; this produced a monotonically increasing stress and thus stable constitutive behavior. Recent experiments have suggested that entangled polymer solutions may possess a constitutive instability after all, and have led some workers to question the validity of existing constitutive models. In this Letter we use a simple modern constitutive model for entangled polymers, the non-stretching Rolie-Poly model with an added solvent viscosity, and show that (1) instability and shear banding is captured within this simple class of models; (2) shear banding phenomena is observable for weakly stable fluids in flow geometries that impose a sufficiently inhomogeneous total shear stress; (3) transient phenomena can possess inhomogeneities that resemble shear banding, even for weakly stable fluids. Many of these results are model-independent.Comment: 5 figure

    Efficiency of cloud condensation nuclei formation from ultrafine particles

    Get PDF
    Atmospheric cloud condensation nuclei (CCN) concentrations are a key uncertainty in the assessment of the effect of anthropogenic aerosol on clouds and climate. The ability of new ultrafine particles to grow to become CCN varies throughout the atmosphere and must be understood in order to understand CCN formation. We have developed the Probability of Ultrafine particle Growth (PUG) model to answer questions regarding which growth and sink mechanisms control this growth, how the growth varies between different parts of the atmosphere and how uncertainties with respect to the magnitude and size distribution of ultrafine emissions translates into uncertainty in CCN generation. The inputs to the PUG model are the concentrations of condensable gases, the size distribution of ambient aerosol, particle deposition timescales and physical properties of the particles and condensable gases. It was found in most cases that condensation is the dominant growth mechanism and coagulation with larger particles is the dominant sink mechanism for ultrafine particles. In this work we found that the probability of a new ultrafine particle generating a CCN varies from <0.1% to ~90% in different parts of the atmosphere, though in the boundary layer a large fraction of ultrafine particles have a probability between 1% and 40%. Some regions, such as the tropical free troposphere, are areas with high probabilities; however, variability within regions makes it difficult to predict which regions of the atmosphere are most efficient for generating CCN from ultrafine particles. For a given mass of primary ultrafine aerosol, an uncertainty of a factor of two in the modal diameter can lead to an uncertainty in the number of CCN generated as high as a factor for eight. It was found that no single moment of the primary aerosol size distribution, such as total mass or number, is a robust predictor of the number of CCN ultimately generated. Therefore, a complete description of the emissions size distribution is generally required for global aerosol microphysics models

    Transverse Momentum Correlations in Relativistic Nuclear Collisions

    Full text link
    From the correlation structure of transverse momentum ptp_t in relativistic nuclear collisions we observe for the first time temperature/velocity structure resulting from low-Q2Q^2 partons. Our novel analysis technique does not invoke an {\em a priori} jet hypothesis. ptp_t autocorrelations derived from the scale dependence of fluctuations reveal a complex parton dissipation process in RHIC heavy ion collisions. We also observe structure which may result from collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and correlations in relativistic nuclear collision

    Infrared Lighting Does Not Suppress Catch of Codling Moth (Lepidoptera: Tortricidae) in Pheromone-Baited Monitoring Traps

    Get PDF
    Video cameras are increasingly being used to record insect behaviors in the field over prolonged intervals. A nagging question about crepuscular and nocturnal recordings is whether or not infrared light emitted by such cameras to illuminate the scene influences the behaviors of the subjects or study outcomes. Here we quantified catches of male codling moths, Cydia pomonella (L.), responding to sex pheromone-baited monitoring traps illuminated with infrared, red, white, or no light. No statistically significant differences were found between any of these treatments

    Connectivity Explains Local Ant Community Structure in A Neotropical Forest Canopy: A Large‐Scale Experimental Approach

    Get PDF
    Understanding how habitat structure and resource availability affect local species distributions is a key goal of community ecology. Where habitats occur as a mosaic, variation in connectivity among patches influences both local species richness and composition, and connectivity is a key conservation concern in fragmented landscapes. Similarly, availability of limiting resources frequently determines species coexistence or exclusion. For primarily cursorial arthropods like ants, gaps between neighboring trees are a significant barrier to movement through the forest canopy. Competition for limited resources such as nest sites also promotes antagonistic interactions. Lianas (woody vines) connect normally isolated neighboring tree crowns and often have hollow stems inhabited by ants. We used two large‐scale liana‐removal experiments to determine how connectivity and nest site availability provided by lianas affect arboreal ant species richness, species composition, and β‐diversity in a lowland tropical forest in Panama. Removing lianas from a tree crown reduced ant species richness up to 35%, and disproportionately affected species that require large foraging areas. Adding artificial connectivity to trees mitigated the effects of liana removal. Ant colonization of artificial nests was higher (73% occupied) in trees without lianas vs. trees with lianas (28% occupied). However, artificial nests typically were colonized by existing polydomous, resident ant species. As a result, nest addition did not affect ant community structure. Collectively, these results indicate that lianas are important to the maintenance of arboreal ant diversity specifically by providing connectivity among neighboring tree crowns. Anticipated increases in liana abundance in this forest could increase the local (tree‐level) species richness of arboreal ants, with a compositional bias toward elevating the density of broad‐ranging specialist predators

    Coulomb Gap: How a Metal Film Becomes an Insulator

    Get PDF
    Electron tunneling measurements of the density of states (DOS) in ultra-thin Be films reveal that a correlation gap mediates their insulating behavior. In films with sheet resistance R<5000ΩR<5000\Omega the correlation singularity appears as the usual perturbative ln(V)ln(V) zero bias anomaly (ZBA) in the DOS. As R is increased further, however, the ZBA grows and begins to dominate the DOS spectrum. This evolution continues until a non-perturbative V|V| Efros-Shklovskii Coulomb gap spectrum finally emerges in the highest R films. Transport measurements of films which display this gap are well described by a universal variable range hopping law R(T)=(h/2e2)exp(To/T)1/2R(T)=(h/2e^2)exp(T_o/T)^{1/2}.Comment: 4 figure

    Poincare duality for K-theory of equivariant complex projective spaces

    Get PDF
    We make explicit Poincare duality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation

    Exchange Field-Mediated Magnetoresistance in the Correlated Insulator Phase of Be Films

    Full text link
    We present a study of the proximity effect between a ferromagnet and a paramagnetic metal of varying disorder. Thin beryllium films are deposited onto a 5 nm-thick layer of the ferromagnetic insulator EuS. This bilayer arrangement induces an exchange field, HexH_{ex}, of a few tesla in low resistance Be films with sheet resistance RRQR\ll R_Q, where RQ=h/e2R_Q=h/e^2 is the quantum resistance. We show that HexH_{ex} survives in very high resistance films and, in fact, appears to be relatively insensitive to the Be disorder. We exploit this fact to produce a giant low-field magnetoresistance in the correlated insulator phase of Be films with RRQR\gg R_Q.Comment: To be published in Physical Review Letter
    corecore