4,219 research outputs found

    Synthetic biology and conservation of nature: wicked problems and wicked solutions.

    Get PDF
    So far, conservation scientists have paid little attention to synthetic biology; this is unfortunate as the technology is likely to transform the operating space within which conservation functions, and therefore the prospects for maintaining biodiversity into the future

    The homotopy type of the loops on (n−1)(n-1)-connected (2n+1)(2n+1)-manifolds

    Full text link
    For n≥2n\geq 2 we compute the homotopy groups of (n−1)(n-1)-connected closed manifolds of dimension (2n+1)(2n+1). Away from the finite set of primes dividing the order of the torsion subgroup in homology, the pp-local homotopy groups of MM are determined by the rank of the free Abelian part of the homology. Moreover, we show that these pp-local homotopy groups can be expressed as a direct sum of pp-local homotopy groups of spheres. The integral homotopy type of the loop space is also computed and shown to depend only on the rank of the free Abelian part and the torsion subgroup.Comment: Trends in Algebraic Topology and Related Topics, Trends Math., Birkhauser/Springer, 2018. arXiv admin note: text overlap with arXiv:1510.0519

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Country differences in the diagnosis and management of coronary heart disease : a comparison between the US, the UK and Germany

    Get PDF
    Background The way patients with coronary heart disease (CHD) are treated is partly determined by non-medical factors. There is a solid body of evidence that patient and physician characteristics influence doctors' management decisions. Relatively little is known about the role of structural issues in the decision making process. This study focuses on the question whether doctors' diagnostic and therapeutic decisions are influenced by the health care system in which they take place. This non-medical determinant of medical decision-making was investigated in an international research project in the US, the UK and Germany. Methods Videotaped patients within an experimental study design were used. Experienced actors played the role of patients with symptoms of CHD. Several alternative versions were taped featuring the same script with patients of different sex, age and social status. The videotapes were shown to 384 randomly selected primary care physicians in the three countries under study. The sample was stratified on gender and duration of professional experience. Physicians were asked how they would diagnose and manage the patient after watching the video vignette using a questionnaire with standardised and open-ended questions. Results Results show only small differences in decision making between British and American physicians in essential aspects of care. About 90% of the UK and US doctors identified CHD as one of the possible diagnoses. Further similarities were found in test ordering and lifestyle advice. Some differences between the US and UK were found in the certainty of the diagnoses, prescribed medications and referral behaviour. There are numerous significant differences between Germany and the other two countries. German physicians would ask fewer questions, they would order fewer tests, prescribe fewer medications and give less lifestyle advice. Conclusion Although all physicians in the three countries under study were presented exactly the same patient, some disparities in the diagnostic and patient management decisions were evident. Since other possible influences on doctors treatment decisions are controlled within the experimental design, characteristics of the health care system seem to be a crucial factor within the decision making process

    Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer

    Get PDF
    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Ã… x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen

    Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation

    Get PDF
    The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi
    • …
    corecore