605 research outputs found
XIII. Management of the anaemic patient in general practice
Anaemia is one of the easiest conditions to recognize, yet in spite of this patients are frequently mismanaged. Treatment with iron, liver extract, folic acid or vitamin B12 is often prescribed prematurely without a precise diagnosis being made, not infrequently in the form of proprietary preparations containing combinations of allthese substances. When such haphazard treatment is followed by improvement, further investigations are often not undertaken and underlying disease is missed. It is always worth while for the doctor to try and answer the question: Why did this patient become anaemic
Conductivity of 2D many-component electron gas, partially-quantized by magnetic field
The 2D semimetal consisting of heavy holes and light electrons is studied.
The consideration is based on assumption that electrons are quantized by
magnetic field while holes remain classical. We assume also that the
interaction between components is weak and the conversion between components is
absent. The kinetic equation for holes colliding with quantized electrons is
utilized. It has been stated that the inter-component friction and
corresponding correction to the dissipative conductivity {\it do
not vanish at zero temperature} due to degeneracy of the Landau levels. This
correction arises when the Fermi level crosses the Landau level.
The limits of kinetic equation applicability were found. We also study the
situation of kinetic memory when particles repeatedly return to the points of
their meeting.Comment: 13 pages, 1 figur
Eccentricities of Planets in Binary Systems
The most puzzling property of the extrasolar planets discovered by recent
radial velocity surveys is their high orbital eccentricities, which are very
difficult to explain within our current theoretical paradigm for planet
formation. Current data reveal that at least 25% of these planets, including
some with particularly high eccentricities, are orbiting a component of a
binary star system. The presence of a distant companion can cause significant
secular perturbations in the orbit of a planet. At high relative inclinations,
large-amplitude, periodic eccentricity perturbations can occur. These are known
as "Kozai cycles" and their amplitude is purely dependent on the relative
orbital inclination. Assuming that every planet host star also has a (possibly
unseen, e.g., substellar) distant companion, with reasonable distributions of
orbital parameters and masses, we determine the resulting eccentricity
distribution of planets and compare it to observations? We find that
perturbations from a binary companion always appear to produce an excess of
planets with both very high (e>0.6) and very low (e<0.1) eccentricities. The
paucity of near-circular orbits in the observed sample implies that at least
one additional mechanism must be increasing eccentricities. On the other hand,
the overproduction of very high eccentricities observed in our models could be
combined with plausible circularization mechanisms (e.g., friction from
residual gas) to create more planets with intermediate eccentricities
(e=0.1-0.6).Comment: 8 pages, to appear in "Close Binaries in the 21st Century: New
Opportunities and Challenges", ed. A. Gimenez et al. (Springer
Superfluid Spin-down, with Random Unpinning of the Vortices
The so-called ``creeping'' motion of the pinned vortices in a rotating
superfluid involves ``random unpinning'' and ``vortex motion'' as two
physically separate processes. We argue that such a creeping motion of the
vortices need not be (biased) in the direction of an existing radial Magnus
force, nor should a constant microscopic radial velocity be assigned to the
vortex motion, in contradiction with the basic assumptions of the ``vortex
creep'' model. We point out internal inconsistencies in the predictions of this
model which arise due to this unjustified foundation that ignores the role of
the actual torque on the superfluid. The proper spin-down rate of a pinned
superfluid is then calculated and turns out to be much less than that suggested
in the vortex creep model, hence being of even less observational significance
for its possible application in explaining the post-glitch relaxations of the
radio pulsars.Comment: To be published in J. Low Temp. Phys., Vol. 139, May 2005 [Eqs 11,
15-17 here, have been revised and, may be substituted for the corresponding
ones in that paper
On the lowest eigenvalue of Laplace operators with mixed boundary conditions
In this paper we consider a Robin-type Laplace operator on bounded domains.
We study the dependence of its lowest eigenvalue on the boundary conditions and
its asymptotic behavior in shrinking and expanding domains. For convex domains
we establish two-sided estimates on the lowest eigenvalues in terms of the
inradius and of the boundary conditions
Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases
Gaudin algebras form a family of maximal commutative subalgebras in the
tensor product of copies of the universal enveloping algebra U(\g) of a
semisimple Lie algebra \g. This family is parameterized by collections of
pairwise distinct complex numbers . We obtain some new commutative
subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These
commutative subalgebras turn to be related to the hamiltonians of bending flows
and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of
spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde
The proton spin sum rule chiral bag prediction, an update
We reevaluate a quark model prediction using the new QCD evolution function
calculated to the 3 loop order and conclude that this model compares favorably
with the new experimental results.Comment: 10 pages, 2 figures available by request, give fax numbe
- …