58,233 research outputs found

    Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    Get PDF
    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences

    The Ultimate Halo Mass in a LCDM Universe

    Full text link
    In the far future of an accelerating LCDM cosmology, the cosmic web of large-scale structure consists of a set of increasingly isolated halos in dynamical equilibrium. We examine the approach of collisionless dark matter to hydrostatic equilibrium using a large N-body simulation evolved to scale factor a = 100, well beyond the vacuum--matter equality epoch, a_eq ~ 0.75, and 53/h Gyr into the future for a concordance model universe (Omega_m ~ 0.3, Omega_Lambda ~ 0.7). The radial phase-space structure of halos -- characterized at a < a_eq by a pair of zero-velocity surfaces that bracket a dynamically active accretion region -- simplifies at a > 10 a_eq when these surfaces merge to create a single zero-velocity surface, clearly defining the halo outer boundary, rhalo, and its enclosed mass, mhalo. This boundary approaches a fixed physical size encompassing a mean interior density ~ 5 times the critical density, similar to the turnaround value in a classical Einstein-deSitter model. We relate mhalo to other scales currently used to define halo mass (m200, mvir, m180b) and find that m200 is approximately half of the total asymptotic cluster mass, while m180b follows the evolution of the inner zero velocity surface for a < 2 but becomes much larger than the total bound mass for a > 3. The radial density profile of all bound halo material is well fit by a truncated Hernquist profile. An NFW profile provides a somewhat better fit interior to r200 but is much too shallow in the range r200 < r < rhalo.Comment: 5 pages, 3 figures, submitted to MNRAS letter

    Ecosystem size predicts eco-morphological variability in a postglacial diversification

    Get PDF
    Identifying the processes by which new phenotypes and species emerge has been a long-standing effort in evolutionary biology. Young adaptive radiations provide a model to study patterns of morphological and ecological diversification in environmental context. Here, we use the recent radiation (ca. 12k years old) of the freshwater fish Arctic charr (Salvelinus alpinus) to identify abiotic and biotic environmental factors associated with adaptive morphological variation. Arctic charr are exceptionally diverse, and in postglacial lakes there is strong evidence of repeated parallel evolution of similar morphologies associated with foraging. We measured head depth (a trait reflecting general eco-morphology and foraging ecology) of 1,091 individuals across 30 lake populations to test whether fish morphological variation was associated with lake bathymetry and/or ecological parameters. Across populations, we found a significant relationship between the variation in head depth of the charr and abiotic environmental characteristics: positively with ecosystem size (i.e., lake volume, surface area, depth) and negatively with the amount of littoral zone. In addition, extremely robust-headed phenotypes tended to be associated with larger and deeper lakes. We identified no influence of co-existing biotic community on Arctic charr trophic morphology. This study evidences the role of the extrinsic environment as a facilitator of rapid eco-morphological diversification

    Does Openness to Trade Make Countries More Vulnerable to Sudden Stops, or Less? Using Gravity to Establish Causality

    Get PDF
    Openness to trade is one factor that has been identified as determining whether a country is prone to sudden stops in capital inflows, crashes in currencies, or severe recessions. Some believe that openness raises vulnerability to foreign shocks, while others believe that it makes adjustment to crises less painful. Several authors have offered empirical evidence that having a large tradable sector reduces the contraction necessary to adjust to a given cut-off in funding. This would help explain lower vulnerability to crises in Asia than in Latin America. Such studies may, however, be subject to the problem that trade is endogenous. Using the gravity instrument for trade openness, which is constructed from geographical determinants of bilateral trade, this paper finds that openness indeed makes countries less vulnerable, both to severe sudden stops and currency crashes, and that the relationship is even stronger when correcting for the endogeneity of trade.

    Seasonal Occurrence of the White Shark, Carcharodon carcharias, in Waters off the Florida West Coast, with Notes on its Life History

    Get PDF
    The white shark, Carcharodon carcharias, is considered rare in the Gulf of Mexico; however, recent longline captures coupled with historical landings information suggest that the species occurs seasonally (winter-spring) within this region. We examined a total of seven adult and juvenile white sharks (185-472 em total length) captured in waters off the west coast of Florida. Commercial longline fisheries were monitored for white sharks during all months (1981-94), but this species was captured only from January to April. All white sharks were captured in continental shelf waters from 37 to 222 km off the west coast of Florida when sea surface temperatures ranged from 18.7° to 21.6°C. Depths at capture locations ranged from 20 to 164 m. Fishing gear typically used in Gulf of Mexico offshore fisheries may not be effective at capturing this species, and the apparent rarity of white sharks in this area may be, in part, a function of gear bias

    Radar mapping, archaeology, and ancient land use in the Maya lowlands

    Get PDF
    Data from the use of synthetic aperture radar in aerial survey of the southern Maya lowlands suggest the presence of very large areas drained by ancient canals for the purpose of intensive cultivation. Preliminary ground checks in several very limited areas confirm the existence of canals and raised fields. Excavations and ground surveys by several scholars provide valuable comparative information. Taken together, the new data suggest that Late Classic period Maya civilization was firmly grounded in large-scale and intensive cultivation of swampy zones

    The genetic architecture underlying the evolution of a rare piscivorous life history form in brown trout after secondary contact and strong introgression

    Get PDF
    Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout ( ) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation

    Mapping and Characterizing Subtidal Oyster Reefs Using Acoustic Techniques, Underwater Videography and Quadrat Counts

    Get PDF
    Populations of the eastern oyster Crassostrea virginica have been in long-term decline in most areas. A major hindrance to effective oyster management has been lack of a methodology for accurately and economically obtaining data on their distribution and abundance patterns. Here, we describe early results from studies aimed at development of a mapping and monitoring protocol involving acoustic techniques, underwater videography, and destructive sampling (excavated quadrats). Two subtidal reefs in Great Bay, New Hampshire, were mapped with side-scan sonar and with videography by systematically imaging multiple sampling cells in a grid covering the same areas. A single deployment was made in each cell, and a 5-10-s recording was made of a 0.25-m2 area; the location of each image was determined using a differential global position system. A still image was produced for each of the cells and all (n = 40 or 44) were combined into a single photomontage overlaid onto a geo-referenced base map for each reef using Arc View geographic information system. Quadrat (0.25 m2 ) samples were excavated from 9 or 10 of the imaged areas on each reef, and all live oysters were counted and measured. Intercomparisons of the acoustic, video, and quadrat data suggest: (1) acoustic techniques and systematic videography can readily delimit the boundaries of oyster reefs; (2) systematic videography can yield quantitative data on shell densities and information on reef structure; and (3) some combination of acoustics, systematic videography, and destructive sampling can provide spatially detailed information on oyster reef characteristics

    Polymer matrix and graphite fiber interface study

    Get PDF
    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized

    Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics

    Full text link
    In this article we develop some new existence results for the Einstein constraint equations using the Lichnerowicz-York conformal rescaling method. The mean extrinsic curvature is taken to be an arbitrary smooth function without restrictions on the size of its spatial derivatives, so that it can be arbitrarily far from constant. The rescaled background metric belongs to the positive Yamabe class, and the freely specifiable part of the data given by the traceless-transverse part of the rescaled extrinsic curvature and the matter fields are taken to be sufficiently small, with the matter energy density not identically zero. Using topological fixed-point arguments and global barrier constructions, we then establish existence of solutions to the constraints. Two recent advances in the analysis of the Einstein constraint equations make this result possible: A new type of topological fixed-point argument without smallness conditions on spatial derivatives of the mean extrinsic curvature, and a new construction of global super-solutions for the Hamiltonian constraint that is similarly free of such conditions on the mean extrinsic curvature. For clarity, we present our results only for strong solutions on closed manifolds. However, our results also hold for weak solutions and for other cases such as compact manifolds with boundary; these generalizations will appear elsewhere. The existence results presented here for the Einstein constraints are apparently the first such results that do not require smallness conditions on spatial derivatives of the mean extrinsic curvature.Comment: 4 pages, no figures, accepted for publication in Physical Review Letters. (Abstract shortenned and other minor changes reflecting v4 version of arXiv:0712.0798
    corecore