15,242 research outputs found

    The Combined Optimization of Log Bucking and Sawing Strategies

    Get PDF
    Determination of optimal bucking and sawing policies is linked in a common model. The core of this model is a linear program (LP) that selects stem bucking and log sawing policies to maximize profits given an input distribution of raw material. Product output is controlled by price-volume relationships that simulate product demand curves. The model uses a three stage solution process performed iteratively until identical solution bases are obtained. A variation of the Dantzig-Wolfe decomposition principle is used, linking the three models through the use of the Lagrange multipliers from the LP. The procedure is demonstrated for a sample sawmill. The revenue gain from using the policies suggested by the integrated model over those found by the bucking and sawing programs working separately was found to be 26%-36%

    Transverse Momentum Correlations in Relativistic Nuclear Collisions

    Full text link
    From the correlation structure of transverse momentum ptp_t in relativistic nuclear collisions we observe for the first time temperature/velocity structure resulting from low-Q2Q^2 partons. Our novel analysis technique does not invoke an {\em a priori} jet hypothesis. ptp_t autocorrelations derived from the scale dependence of fluctuations reveal a complex parton dissipation process in RHIC heavy ion collisions. We also observe structure which may result from collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and correlations in relativistic nuclear collision

    Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance.

    Get PDF
    The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt\u27s lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents

    Evolution of a Peer Review and Evaluation Program for Online Course Development

    Get PDF
    The faculty peer assistants (FPAs) program combines a mentoring and peer review process for initial online faculty course development and subsequent course revision. An FPA mentors colleagues during course design and conducts peer reviews when the courses are complete. The program incorporates a peer review and evaluation form that outlines course standards and guides the faculty course developer, the peer reviewer, and the department chair. Feedback about the program from department chairs, faculty course developers, and FPAs was uniformly positive

    Diagnostic performance of co-rads and the rsna classification system in evaluating covid-19 at chest cta meta-analysis

    Get PDF
    Purpose: To determine the diagnostic performance of the COVID-19 Reporting and Data System (CO-RADS) and the Radiological Society of North America (RSNA) categorizations in patients with clinically suspected coronavirus disease 2019 (COVID-19) infection. Materials and Methods: In this meta-analysis, studies from 2020, up to August 24, 2020, were assessed for inclusion criteria of studies that used CO-RADS or the RSNA categories for scoring chest CT in patients suspected of having COVID-19. A total of 186 studies were identified. After review of abstracts and text, a total of nine studies were included in this study. Patient information (n¸ age, sex), CO-RADS and RSNA scoring categories, and other study characteristics were extracted. Study quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Meta-analysis was performed with a random effects model. Results: Nine studies (3283 patients) were included. Overall study quality was good, except for risk of nonperformance of repeated reverse-transcriptase polymerase chain reaction (RT-PCR) testing after negative initial RT-PCR testing and persistent clinical suspicion in four studies. Pooled COVID-19 frequencies in CO-RADS categories were: 1, 8.8%; 2, 11.1%; 3, 24.6%; 4, 61.9%; and 5, 89.6%. Pooled COVID-19 frequencies in RSNA classification categories were: negative, 14.4%; atypical, 5.7%; indeterminate, 44.9%; and typical, 92.5%. Pooled pairs of sensitivity and specificity using CO-RADS thresholds were the following: at least 3, 92.5% (95% CI: 87.1, 95.7) and 69.2% (95%: CI: 60.8, 76.4); at least 4, 85.8% (95% CI: 78.7, 90.9) and 84.6% (95% CI: 79.5, 88.5); and 5, 70.4% (95% CI: 60.2, 78.9) and 93.1% (95% CI: 87.7, 96.2). Pooled pairs of sensitivity and specificity using RSNA classification thresholds for indeterminate were 90.2% (95% CI: 87.5, 92.3) and 75.1% (95% CI: 68.9, 80.4) and for typical were 65.2% (95% CI: 37.0, 85.7) and 94.9% (95% CI: 86.4, 98.2). Conclusion: COVID-19 infection frequency was higher in patients categorized with higher CO-RADS and RSNA classification categories

    Smectic-\u3cem\u3eA\u3c/em\u3e Elastomers with Weak Director Anchoring

    Get PDF
    Experimentally it is possible to manipulate the director in a (chiral) smectic-A elastomer using an electric field. This suggests that the director is not necessarily locked to the layer normal, as described in earlier papers that extended rubber elasticity theory to smectics. Here, we consider the case that the director is weakly anchored to the layer normal assuming that there is a free energy penalty associated with relative tilt between the two. We use a recently developed weak-anchoring generalization of rubber elastic approaches to smectic elastomers and study shearing in the plane of the layers, stretching in the plane of the layers, and compression and elongation parallel to the layer normal. We calculate, inter alia, the engineering stress and the tilt angle between director and layer normal as functions of the applied deformation. For the latter three deformations, our results predict the existence of an instability towards the development of shear accompanied by smectic-C-like order
    • …
    corecore