6,524 research outputs found

    The evolution of the dystroglycan complex, a major mediator of muscle integrity

    Get PDF
    Basement membrane (BM) extracellular matrices are crucial for the coordination of different tissue layers. A matrix adhesion receptor that is important for BM function and stability in many mammalian tissues is the dystroglycan (DG) complex. This comprises the non-covalently-associated extracellular α-DG, that interacts with laminin in the BM, and the transmembrane β-DG, that interacts principally with dystrophin to connect to the actin cytoskeleton. Mutations in dystrophin, DG, or several enzymes that glycosylate α-DG underlie severe forms of human muscular dystrophy. Nonwithstanding the pathophysiological importance of the DG complex and its fundamental interest as a non-integrin system of cell-ECM adhesion, the evolution of DG and its interacting proteins is not understood. We analysed the phylogenetic distribution of DG, its proximal binding partners and key processing enzymes in extant metazoan and relevant outgroups. We identify that DG originated after the divergence of ctenophores from porifera and eumetazoa. The C-terminal half of the DG core protein is highly-conserved, yet the N-terminal region, that includes the laminin-binding region, has undergone major lineage-specific divergences. Phylogenetic analysis based on the C-terminal IG2_MAT_NU region identified three distinct clades corresponding to deuterostomes, arthropods, and mollusks/early-diverging metazoans. Whereas the glycosyltransferases that modify α-DG are also present in choanoflagellates, the DG-binding proteins dystrophin and laminin originated at the base of the metazoa, and DG-associated sarcoglycan is restricted to cnidarians and bilaterians. These findings implicate extensive functional diversification of DG within invertebrate lineages and identify the laminin-DG-dystrophin axis as a conserved adhesion system that evolved subsequent to integrin-ECM adhesion, likely to enhance the functional complexity of cell-BM interactions in early metazoans

    An evaluation of the evolution of the gene structure of dystroglycan

    Get PDF
    BACKGROUND: Dystroglycan (DG) is an adhesion receptor complex composed of two non-covalently associated subunits, transcribed from a single gene. The extracellular α-DG is highly and heterogeneously glycosylated and binds with high affinity to laminins, and the transmembrane β-DG binds intracellular dystrophin. Multiple cellular functions have been proposed for DG, notwithstanding that its role in skeletal muscle appears central as demonstrated by both primary and secondary severe muscular dystrophic phenotypes collectively known as dystroglycanopathies. We recently analysed the molecular phylogeny of the DG core protein and identified the α/β interface, transmembrane and cytoplasmic domains of β-DG as the most conserved region. It was also identified that the IG2_MAT_NU region has been independently duplicated in multiple lineages. RESULTS: To understand the evolution of dystroglycan in more depth, we investigated dystroglycan gene structure in 35 species representative of the phyla in which dystroglycan has been identified (i.e., all metazoan phyla except Ctenophora). The gene structure of three exons and two introns is remarkably conserved. However, additional lineage-specific introns were identified, which interrupt the coding sequence at distinct points, were identified in multiple metazoan groups, most prominently in ecdysozoans. CONCLUSIONS: A coding DNA sequence (CDS) intron that interrupts the encoding of the IG1 domain is universally conserved and this intron is longer in gnathostomes (jawed vertebrates) than in other metazoans. Lineage-specific gain of additional introns has occurred notably in ecdysozoans, where multiple introns interrupt the large 3′ exon. More limited intron gain has also occurred in placozoa, cnidarians, urochordates and the DG paralogues of lamprey and teleost fish. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-016-2322-x) contains supplementary material, which is available to authorized users

    Analysis of α-dystroglycan/LG domain binding modes:investigating protein motifs that regulate the affinity of isolated LG domains

    Get PDF
    Dystroglycan (DG) is an adhesion complex that links the cytoskeleton to the surrounding extracellular matrix in skeletal muscle and a wide variety of other tissues. It is composed of a highly glycosylated extracellular α-DG associated noncovalently with a transmembrane β-DG whose cytodomain interacts with dystrophin and its isoforms. Alpha-dystroglycan (α-DG) binds tightly and in a calcium-dependent fashion to multiple extracellular proteins and proteoglycans, each of which harbors at least one, or, more frequently, tandem arrays of laminin-globular (LG) domains. Considerable biochemical and structural work has accumulated on the α-DG-binding LG domains, highlighting a significant heterogeneity in ligand-binding properties of domains from different proteins as well as between single and multiple LG domains within the same protein. Here we review biochemical, structural, and functional information on the LG domains reported to bind α-dystroglycan. In addition, we have incorporated bioinformatics and modeling to explore whether specific motifs responsible for α-dystroglycan recognition can be identified within isolated LG domains. In particular, we analyzed the LG domains of slits and agrin as well as those of paradigmatic α-DG non-binders such as laminin-α3. While some stretches of basic residues may be important, no universally conserved motifs could be identified. However, the data confirm that the coordinated calcium atom within the LG domain is needed to establish an interaction with the sugars of α-DG, although it appears that this alone is insufficient to mediate significant α-DG binding. We develop a scenario involving different binding modes of a single LG domain unit, or tandemly repeated units, with α-DG. A variability of binding modes might be important to generate a range of affinities to allow physiological regulation of this interaction, reflecting its crucial biological importance

    Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity.

    Get PDF
    BackgroundThe newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known.ResultsHere, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group.ConclusionsWe found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty

    Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria

    Get PDF
    The aim of the present study was the chemical characterization of some medically relevant essential oils (tea tree, clove, cinnamon bark, thyme and eucalyptus) and the investigation of antibacterial effect of the components of these oils by use of a direct bioautographic method. Thin layer chromatography (TLC) was combined with biological detection in this process. The chemical composition of the oils was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Eucalyptol (84.2%) was the main component of the essential oil of eucalyptus, eugenol (83.7%) of clove oil, and trans-cinnamic aldehyde (73.2%), thymol (49.9%) and terpinen-4-ol (45.8%) of cinnamon bark, thyme and tea tree oils, respectively. Antibacterial activity of the separated components of these oils, as well as their pure main components (eucalyptol, eugenol, trans-cinnamic aldehyde and thymol) was observed against the Gram-negative luminescence tagged plant pathogenic bacterium Pseudomonas syringae pv. maculicola (Psmlux) and the Gram-negative, naturally luminescent marine bacterium Vibrio fischeri. On the whole, the antibacterial activity of the essential oils could be related to their main components, but the minor constituents may be involved in this process. Trans-cinnamic aldehyde and eugenol were the most active compounds in TLC-bioautography. The sensitivity of TLC-bioautographic method can be improved with using luminescent test bacteria. This method is more cost-effective and provides more reliable results in comparison with conventional microbiological methods, e.g. disc-diffusion technique

    Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability

    Full text link
    We confirm 27 planets in 13 planetary systems by showing the existence of statistically significant anti-correlated transit timing variations (TTVs), which demonstrates that the planet candidates are in the same system, and long-term dynamical stability, which places limits on the masses of the candidates---showing that they are planetary. %This overall method of planet confirmation was first applied to \kepler systems 23 through 32. All of these newly confirmed planetary systems have orbital periods that place them near first-order mean motion resonances (MMRs), including 6 systems near the 2:1 MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several unconfirmed planet candidates exist in some systems (that cannot be confirmed with this method at this time). A few of these candidates would also be near first order MMRs with either the confirmed planets or with other candidates. One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets orbiting a 12th magnitude, giant star with radius over three times that of the Sun and effective temperature of 4900 K---among the largest stars known to host a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA

    Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus

    Get PDF
    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control

    Compound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation

    Full text link
    Aminoacylâ tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycylâ tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcotâ Marieâ Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Wholeâ exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a lossâ ofâ function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARSâ related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/1/humu23287-sup-0001-text.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/2/humu23287.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/3/humu23287_am.pd
    corecore