4,807 research outputs found

    The world has changed, and the Wiyot changed with it: the socio-political processes and rationale of cultural landscape decolonization on Wiyot ancestral land

    Get PDF
    This thesis examines recent successful efforts by the Wiyot Tribe in Humboldt County, California to resist and reverse forms of settler-colonial oppression with tangible and unprecedented results. The original inhabitants of Humboldt Bay: the Wiyot, and their allies in the local community, have overcome settler socio-political resistance in three contentious, public disputes to preserve and restore tribal sovereignty over ancestral land and culture. While much has been written about the history of the United States as a settler-colonial project, more research is necessary to understand the processes of grassroots decolonization efforts to alter cultural landscapes. Using a combination of feminist and critical geographic theoretical methodologies, archival research, and qualitative interview methods, this thesis informs gaps in the academic discourse on decolonization, focusing on potential strategies that can be replicated elsewhere. The results of this research recognize a historical, legal, and moral justification for decolonization and an emphasis on reading cultural landscapes as an effective decolonization tool, seeking to analyze the Wiyot’s successes in ways that can illuminate tactical strengths and their potential use in future decolonization struggles

    TSGL A Thread Safe Graphics Library for Visualizing Parallelism

    Get PDF
    AbstractMulticore processors are now the standard CPU architecture, and multithreaded parallel programs are needed to take full advantage of such CPUs. New tools are needed to help students learn how to design and build such parallel programs. In this paper, we present the thread-safe graphics library (TSGL), a new C++11 library that allows different threads to draw to a shared Canvas, which is updated in approximate real-time. Using TSGL, instructors and students can create visualizations that illustrate multithreaded behavior. We present three multithreaded applications that illustrate the use of TSGL to help students see and understand how an application is using parallelism to speed up its computation

    Smectic-\u3cem\u3eA\u3c/em\u3e Elastomers with Weak Director Anchoring

    Get PDF
    Experimentally it is possible to manipulate the director in a (chiral) smectic-A elastomer using an electric field. This suggests that the director is not necessarily locked to the layer normal, as described in earlier papers that extended rubber elasticity theory to smectics. Here, we consider the case that the director is weakly anchored to the layer normal assuming that there is a free energy penalty associated with relative tilt between the two. We use a recently developed weak-anchoring generalization of rubber elastic approaches to smectic elastomers and study shearing in the plane of the layers, stretching in the plane of the layers, and compression and elongation parallel to the layer normal. We calculate, inter alia, the engineering stress and the tilt angle between director and layer normal as functions of the applied deformation. For the latter three deformations, our results predict the existence of an instability towards the development of shear accompanied by smectic-C-like order

    Smectic-\u3cem\u3eC\u3c/em\u3e Tilt Under Shear in Smectic-\u3cem\u3eA\u3c/em\u3e Elastomers

    Get PDF
    Stenull and Lubensky [Phys. Rev. E 76, 011706 (2007)] have argued that shear strain and tilt of the director relative to the layer normal are coupled in smectic elastomers and that the imposition of one necessarily leads to the development of the other. This means, in particular, that a smectic-A elastomer subjected to a simple shear will develop smectic-C-like tilt of the director. Recently, Kramer and Finkelmann [e-print arXiv:0708.2024; Phys. Rev. E 78, 021704 (2008)], performed shear experiments on smectic-A elastomers using two different shear geometries. One of the experiments, which implements simple shear, produces clear evidence for the development of smectic-C-like tilt. Here, we generalize a model for smectic elastomers introduced by Adams and Warner [Phys. Rev. E 71, 021708 (2005)] and use it to study the magnitude of SmC-like tilt under shear for the two geometries investigated by Kramer and Finkelmann. Using reasonable estimates of model parameters, we estimate the tilt angle for both geometries, and we compare our estimates to the experimental results. The other shear geometry is problematic since it introduces additional in-plane compressions in a sheetlike sample, thus inducing instabilities that we discuss

    Smectic-C tilt under shear in Smectic-A elastomers

    Get PDF
    Stenull and Lubensky [Phys. Rev. E {\bf 76}, 011706 (2007)] have argued that shear strain and tilt of the director relative to the layer normal are coupled in smectic elastomers and that the imposition of one necessarily leads to the development of the other. This means, in particular, that a Smectic-A elastomer subjected to a simple shear will develop Smectic-C-like tilt of the director. Recently, Kramer and Finkelmann [arXiv:0708.2024, Phys. Rev. E {\bf 78}, 021704 (2008)] performed shear experiments on Smectic-A elastomers using two different shear geometries. One of the experiments, which implements simple shear, produces clear evidence for the development of Smectic-C-like tilt. Here, we generalize a model for smectic elastomers introduced by Adams and Warner [Phys. Rev. E {\bf 71}, 021708 (2005)] and use it to study the magnitude of Smectic-C-like tilt under shear for the two geometries investigated by Kramer and Finkelmann. Using reasonable estimates of model parameters, we estimate the tilt angle for both geometries, and we compare our estimates to the experimental results. The other shear geometry is problematic since it introduces additional in-plane compressions in a sheet-like sample, thus inducing instabilities that we discuss.Comment: 8 pages, 5 figure

    Modelling nasal high flow therapy effects on upper airway resistance and resistive work of breathing

    Get PDF
    Aim The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30–60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (Vt) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. Method NHF was applied via three different cannula sizes to a 3-D printed human upper airway. Pressure drop and flow rate were measured and used to estimate inspiratory and expiratory upper airway resistances. The resistance information was used to compute the muscular work required to overcome the resistance of the upper airway to flow. Results NHF raises expiratory resistance relative to spontaneous breathing if the breathing pattern does not change but reduces work of breathing if peak expiratory flow falls. Of the cannula sizes used, the large cannula produced the greatest resistance and the small cannula produced the least. The work required to cause tracheal flow through the upper airway was reduced if the RR and minute volume are reduced by NHF. NHF has been observed to do so in COPD patients (Bräunlich et al., 2013). A reduction in I:E ratio due to therapy was found to reduce work of breathing if the peak inspiratory flow is less than the flow below which no inspiratory effort is required to overcome upper airway resistance. Conclusion NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of breathing, RR and minute volume
    • …
    corecore