395 research outputs found

    Frenkel Excitons in Random Systems With Correlated Gaussian Disorder

    Get PDF
    Optical absorption spectra of Frenkel excitons in random one-dimensional systems are presented. Two models of inhomogeneous broadening, arising from a Gaussian distribution of on-site energies, are considered. In one case the on-site energies are uncorrelated variables whereas in the second model the on-site energies are pairwise correlated (dimers). We observe a red shift and a broadening of the absorption line on increasing the width of the Gaussian distribution. In the two cases we find that the shift is the same, within our numerical accuracy, whereas the broadening is larger when dimers are introduced. The increase of the width of the Gaussian distribution leads to larger differences between uncorrelated and correlated disordered models. We suggest that this higher broadening is due to stronger scattering effects from dimers.Comment: 9 pages, REVTeX 3.0, 3 ps figures. To appear in Physical Review

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog

    Fluorescence decay in aperiodic Frenkel lattices

    Get PDF
    We study motion and capture of excitons in self-similar linear systems in which interstitial traps are arranged according to an aperiodic sequence, focusing our attention on Fibonacci and Thue-Morse systems as canonical examples. The decay of the fluorescence intensity following a broadband pulse excitation is evaluated by solving the microscopic equations of motion of the Frenkel exciton problem. We find that the average decay is exponential and depends only on the concentration of traps and the trapping rate. In addition, we observe small-amplitude oscillations coming from the coupling between the low-lying mode and a few high-lying modes through the topology of the lattice. These oscillations are characteristic of each particular arrangement of traps and they are directly related to the Fourier transform of the underlying lattice. Our predictions can be then used to determine experimentally the ordering of traps.Comment: REVTeX 3.0 + 3PostScript Figures + epsf.sty (uuencoded). To appear in Physical Review

    Three-dimensional effects on extended states in disordered models of polymers

    Get PDF
    We study electronic transport properties of disordered polymers in the presence of both uncorrelated and short-range correlated impurities. In our procedure, the actual physical potential acting upon the electrons is replaced by a set of nonlocal separable potentials, leading to a Schr\"odinger equation that is exactly solvable in the momentum representation. We then show that the reflection coefficient of a pair of impurities placed at neighboring sites (dimer defect) vanishes for a particular resonant energy. When there is a finite number of such defects randomly distributed over the whole lattice, we find that the transmission coefficient is almost unity for states close to the resonant energy, and that those states present a very large localization length. Multifractal analysis techniques applied to very long systems demonstrate that these states are truly extended in the thermodynamic limit. These results reinforce the possibility to verify experimentally theoretical predictions about absence of localization in quasi-one-dimensional disordered systems.Comment: 16 pages, REVTeX 3.0, 5 figures on request from FDA ([email protected]). Submitted to Phys. Rev. B. MA/UC3M/09/9

    Sustainability of the Water Resources of a River Basin

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder

    Get PDF
    We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)∼1/kαS(k) \sim 1/k^{\alpha} with α>0\alpha > 0. Moura and Lyra [Phys. Rev. Lett. {\bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided α>2\alpha > 2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.Comment: 4 pages, 5 figure

    Silicene-based spin-filter device : impact of random vacancies

    Get PDF
    We propose a hybrid spin-filter device based on a silicene nanoribbon. A ferroelectric polymer grown on top of the nanoribbon splits spin-up and spin-down electron bands and gives rise to spin polarisation of the conductance. In particular, we study the effects of a random distribution of vacancies on the performance of this spin-filter device. Disorder induces Anderson localisation of electrons and we find that the localisation length strongly depends on the electron spin. By adjusting the Fermi level of the source contact, only electrons with one spin orientation can reach the drain contact because their localisation length is larger than the length of the device. Electrons with opposite spin are largely back-reflected. Electric conductance then becomes spin polarised and the device behaves as a quasi-half-metal. We conclude that a moderate concentration of vacancies has little impact on the spin-filter capabilities of the device, opening the possibility to using it as a tuneable source of polarized electrons

    Bloch oscillations in an aperiodic one-dimensional potential

    Get PDF
    We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We show that the electric field promotes sustained Bloch oscillations of an initial Gaussian wave packet whose amplitude reflects the band width of extended states. The frequency of these oscillations exhibit unique features, such as a sensitivity to the initial wave packet position and a multimode structure for weak fields, originating from the characteristics of the underlying aperiodic potential.Comment: 6 pages, 7 figure
    • …
    corecore