13 research outputs found

    A validated composite comorbidity index predicts outcomes of CAR T-cell therapy in patients with diffuse large B cell lymphoma.

    No full text
    Chimeric antigen receptor T-cell therapy (CART) has extended survival of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). However, limited durability of response and prevalent toxicities remain problematic. Identifying patients at high risk of disease progression, toxicity, and death would inform treatment decisions. Although the cumulative illness rating scale (CIRS) has been shown to correlate with survival in B-cell malignancies, no prognostic score has been independently validated in CART recipients. We retrospectively identified 577 patients with relapsed/refractory DLBCL indicated for CART at 9 academic centers to form a learning cohort (LC). Random survival forest modeling of overall survival (OS) and progression-free survival (PFS) was performed to determine the most influential CIRS organ systems and severity grades. The presence of a severe comorbidity (CIRS score ≥3) in the respiratory, upper gastrointestinal, hepatic, or renal system - herein termed Severe4 - had the greatest impact on post-CART survival. Controlling for other prognostic factors (number of prior therapies, Eastern Cooperative Oncology Group performance status, BCL6 translocation, molecular subtype), Severe4 was strongly associated with shorter PFS and OS in the LC (hazards ratio [HR]=2.15 and 1.94, respectively; p\u3c0.001) and in an independent single-center validation cohort (VC) (n=218; HR=1.85, p=0.003; HR=1.70, p=0.019, respectively). Severe4 was also a significant predictor of grade ≥3 cytokine release syndrome in the LC (odds ratio [OR]=2.43, p=0.042), while maintaining this trend in the VC (OR=2.05, p=0.114). Thus, our results indicate that adverse outcomes for patients with DLBCL meant to receive CART can be predicted using a simplified CIRS-derived comorbidity index

    Cardiovascular Magnetic Resonance Imaging in Patients With Ibrutinib-Associated Cardiotoxicity

    No full text
    Importance: Ibrutinib has been associated with serious cardiotoxic arrhythmias. In preclinical models, these events are paralleled or proceeded by diffuse myocardial injury (inflammation and fibrosis). Yet whether this is seen in patients or has implications for future cardiotoxic risk is unknown. Objective: To assess the incidence and outcomes of myocardial injury among patients with ibrutinib-related cardiotoxicity. Design, setting, and participants: This cohort study included consecutive patients treated with ibrutinib from 2012 to 2019, phenotyped using cardiovascular magnetic resonance (CMR) from a large US Comprehensive Cancer Center registry. Exposures: Ibrutinib treatment for cancer control. Main outcomes and measures: The primary outcome was the presence of late gadolinium enhancement (LGE) fibrosis. The secondary outcome was the occurrence of major adverse cardiac events (MACE), defined as atrial fibrillation, heart failure, symptomatic ventricular arrhythmias, and sudden death of probable or definite ibrutinib association after CMR. We also assessed parametric-mapping subclinical fibrosis (native-T1, extracellular volume fraction) and inflammation/edema (max-T2) measures. Cardiovascular magnetic resonance measures were compared with those obtained in similar consecutive patients with cancer without ibrutinib treatment (pretreatment controls). Observed measures were also compared with similar-aged broad population rates (general-population controls) and a broader pool of cardiovascular disease (CVD) risk-matched cancer controls. Multivariable regression was used to assess the association between CMR measures and MACE. Results: Overall, 49 patients treated with ibrutinib were identified, including 33 imaged after treatment initiation (mean [SD] age, 65 [10] years, 9 [27%] with hypertension, and 23 [69.7%] with index-arrhythmias); median duration of ibrutinib-use was 14 months. The mean (SD) pretreatment native T1 was 977.0 (73.0) ms, max-T2 56.5 (4.0) ms, and 4 (13.3%) had LGE. Posttreatment initiation, mean (SD) native T1 was 1033.7 (48.2) ms, max-T2 61.5 (4.8) ms, and 17 (54.8%) had LGE (P < .001, P = .01, and P < .001, respectively, pre- vs post-ibrutinib treatment). Native T12SDs was elevated in 9 (28.6%), and max-T22SDs in 21 (63.0%), respectively. Cardiovascular magnetic resonance measures were highest in those with suspected toxic effects (P = .01 and P = .01, respectively). There was no association between traditional CVD-risk or cancer-treatment status and abnormal CMR measures. Among those without traditional CVD, 16 (58.6%) had LGE vs 38 (13.3%) in matched-controls (relative-risk, 4.8; P < .001). Over a median follow-up of 19 months, 13 (39.4%) experienced MACE. In multivariable models inclusive of traditional CVD risk factors, LGE (hazard ratio [HR], 4.9; P = .04), and native-T12SDs (HR, 3.3; P = .05) associated with higher risks of MACE. Conclusions and relevance: In this cohort study, myocardial injury was common in ibrutinib users, and its presence was associated with higher cardiotoxic risk
    corecore