5,386 research outputs found

    Carrier-controlled ferromagnetism in SrTiO3

    Full text link
    Magnetotransport and superconducting properties are investigated for uniformly La-doped SrTiO3 films and GdTiO3/SrTiO3 heterostructures, respectively. GdTiO3/SrTiO3 interfaces exhibit a high-density two-dimensional electron gas on the SrTiO3-side of the interface, while for the SrTiO3 films carriers are provided by the dopant atoms. Both types of samples exhibit ferromagnetism at low temperatures, as evidenced by a hysteresis in the magnetoresistance. For the uniformly doped SrTiO3 films, the Curie temperature is found to increase with doping and to coexist with superconductivity for carrier concentrations on the high-density side of the superconducting dome. The Curie temperature of the GdTiO3/SrTiO3 heterostructures scales with the thickness of the SrTiO3 quantum well. The results are used to construct a stability diagram for the ferromagnetic and superconducting phases of SrTiO3.Comment: Revised version that is closer to the published version; Fig. 2 correcte

    Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings

    Get PDF
    The wildland-urban interface (WUI) continues to transform rural landscapes as previously undeveloped areas are populated with residential and commercial structures which, in turn, impact ecosystems and create landscapes of risk. Within this context, the science of wildfire risk mitigation has experienced renewed and enhanced support among scientists and managers. However, risk mitigation measures have not found purchase in either the public’s acceptance or involvement in this new role of and for fire. This may partially result from little regard for the effects of wildfire prevention efforts on values other than protecting homes and other structures. We report findings from qualitative interviews conducted across the United States to identify and define various values at risk from wildfire. Values influencing risk mitigation emerged from the biophysical, sociodemographic, and sociocultural contexts of wildfire. Findings demonstrate how wildfire is intertwined with diverse sets of risks experienced in daily life. We provide a discussion of how this research impacts the transformation of landscapes and risk management strategies. Identifying and better understanding the effects of values associated with wildfire—and landscape change in the WUI—will allow natural resource managers and decision makers to develop more effective fuel treatment programs and land use policies

    Image, brand and price info: do they always matter the same?

    Get PDF
    We study attention processes to brand, price and visual information about products in online retailing websites, simultaneously considering the effects of consumers’ goals, purchase category and consumers’ statements. We use an intra-subject experimental design, simulated web stores and a combination of observational eye-tracking data and declarative measures. Image information about the product is the more important stimulus, regardless of the task at hand or the store involved. The roles of brand and price information are dependent on the product category and the purchase task involved. Declarative measures of relative brand importance are found to be positively related with its observed importance

    Clustering Analyses of 300,000 Photometrically Classified Quasars--I. Luminosity and Redshift Evolution in Quasar Bias

    Full text link
    Using ~300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses, we study the redshift and luminosity evolution of quasar clustering on scales of ~50 kpc/h to ~20 Mpc/h from redshifts of z~0.75 to z~2.28. We parameterize our clustering amplitudes using realistic dark matter models, and find that a LCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of b_Q = 2.41+/-0.08 (P<χ2=0.847P_{<\chi^2}=0.847) for σ8=0.9\sigma_8=0.9. This represents a better fit than the best-fit power-law model (ω=0.0493±0.0064θ−0.928±0.055\omega = 0.0493\pm0.0064\theta^ {-0.928\pm0.055}; P<χ2=0.482P_{<\chi^2}=0.482). We find b_Q increases with redshift. This evolution is significant at >99.6% using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95.6 +/- ^{4.4}_{1.9}%, a star-quasar separation comparable with the star-galaxy separation in many photometric studies of galaxy clustering. We derive the mean mass of the dark matter halos hosting quasars as MDMH=(5.2+/-0.6)x10^{12} M_solar/h. At z~1.9 we find a 1.5σ1.5\sigma deviation from luminosity-independent quasar clustering; this suggests that increasing our sample size by a factor of 1.8 could begin to constrain any luminosity dependence in quasar bias at z~2. Our results agree with recent studies of quasar environments at z < 0.4, which detected little luminosity dependence to quasar clustering on proper scales >50 kpc/h. At z < 1.6, our analysis suggests that b_Q is constant with luminosity to within ~0.6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z < 1.6 to detect any luminosity dependence in quasars' clustering.Comment: 13 pages, 9 figures, 2 tables; uses amulateapj; accepted to Ap

    Electronic transport in two dimensional graphene

    Full text link
    We provide a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures. A salient feature of our review is a critical comparison between carrier transport in graphene and in two-dimensional semiconductor systems (e.g. heterostructures, quantum wells, inversion layers) so that the unique features of graphene electronic properties arising from its gap- less, massless, chiral Dirac spectrum are highlighted. Experiment and theory as well as quantum and semi-classical transport are discussed in a synergistic manner in order to provide a unified and comprehensive perspective. Although the emphasis of the review is on those aspects of graphene transport where reasonable consensus exists in the literature, open questions are discussed as well. Various physical mechanisms controlling transport are described in depth including long- range charged impurity scattering, screening, short-range defect scattering, phonon scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover, midgap states, quantum Hall effects, and other phenomena.Comment: Final version as accepted for publication in Reviews of Modern Physics (in press), 69 pages with 38 figure
    • …
    corecore