

Low Temperature Atomic Layer Deposition of Tin Dioxide, SnO\(_2\)

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Heo, Jaeyeong, Adam S. Hock, and Roy G. Gordon. 2010. Low temperature atomic layer deposition of tin dioxide, SnO\(_2\). Presentation slides. 10th International Conference on Atomic Layer Deposition. Seoul, South Korea.
Accessed	February 19, 2015 10:06:41 AM EST
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:8961464
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)

Low Temperature Atomic Layer Deposition of Tin Dioxide, SnO₂

Jaeyeong Heo, Adam S. Hock and Roy G. Gordon Harvard University Cambridge, MA USA

Outline

Earth-abundant, non-toxic transparent conductor: SnO₂

ALD process for SnO₂ new tin precursor growth per cycle

SnO₂ film properties composition structure optical properties electrical properties applications

SnO₂: Transparent Conductor and Heat Mirror

High visible transmission (high bandgap ($E_g \sim 4.1 \text{ eV}$)

High electrical conductivity (high electron concentration and mobility)

High environmental stability

Constituent elements are non-toxic and abundant

Known ALD processes require high temperatures, > 200 °C or produce impure films (C, N), amorphous, low conductivity

Tin(II) Cyclic Stannylene as ALD Precursor

N²,N³-di-tert-butyl-butane-2,3-diamido-tin(II)

Hydrocarbon ligand => high volatility (30 Torr at 60 °C)

Chelate structure => thermal stability

Sn-N bonds => reactive to hydrogen peroxide, H_2O_2

Synthesis and properties described by Adam Hock, Wednesday 14:15

ALD Process for SnO₂

Source temperature: 40 °C

Substrate temperature: 120 °C

Growth per cycle: 0.18 nm

Induction period: only a few cycles

ALD Saturation Curves

Increasing doses of cyclic stannylene precursor for tin

Increasing doses of oxygen precursor, hydrogen peroxide

Refractive index ~ 1.94 for saturated growth (3 doses)

Temperature Dependence of Growth

ALD window from 50 to 150 °C

SnO_x Composition

Rutherford Backscattering Spectroscopy (RBS)

No C or N in film

SnO₂ for 2-3 doses

X-Ray Photo-Electron Spectroscopy (XPS)

No impurities detected (C, N) inside film

Smooth Morphology of SnO₂ Films

400 cycles => 71 nm

AFM RMS roughness = 2 nm < 3 % of thickness

Step Coverage

Uniform thickness in holes with aspect ratio 50:1, grown at 50 °C

Polycrystalline Rutile Structure of SnO₂ Films

electron diffraction

SnO₂ has Very Little Visible Absorption

0.10

0.08

0.06

0.04

absorption = 1-T-R 0.02 0.00 400 Wavelength (nm)

film 100 nm thick

Band gap 4.13 eV

600

800

Electrical Properties

Resistivity minimum for stoichiometric SnO_2 (2 to 4 doses)

N-type semiconductor by Hall measurements

electron concentration ~ 10²⁰ cm⁻³

electron mobility ~ $6 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

Resistivity vs. Deposition Temperature

minimum resistivity 0.02 Ω -cm when deposited at 120 °C

Proposed Mechanism

Ligand exchange of Sn precursor with hydroxylated surface

Oxidative addition of hydrogen peroxide

Summary

SnO₂ is transparent semiconductor made of earth-abundant, inexpensive, non-toxic elements

ALD from a cyclic tin(II) amide and $H_2O_2 => SnO_2$

Smooth films of pure, stoichiometric, polycrystalline SnO₂

High optical transparency and electrical conductivity

Successfully used in several applications: organic solar cells (with Alan Heeger, UCSB) conducting and protective coatings for plastics (with Michelle Schulberg, Physical Sciences Inc.) electron multipliers (Philippe deRouffignac, Arradiance, to be presented on Wednesday at 13:30)

another possible application: thin-film transistors on plastic

Acknowledgements

Hall measurements done with Mark Winkler and Eric Mazur

Support was provided by the following:

Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry

Air Force Office of Scientific Research-STTR under contract FA9550-09-C-0075

Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is a part of the Faculty of Arts and Sciences and the School of Engineering and Applied Sciences at Harvard University.