4,581 research outputs found
Rapid Grain Boundary Mobility at Ambient Temperatures
Understanding and measuring the influence of grain boundaries (planar defects in the crystalline structure of materials) and their motion has become a dominant aspect in materials research, with applications in additive manufacturing, fatigue prevention, and material modeling. However, modeling grain boundaries and grain boundary mobility (GBM) is difficult due to the high temperatures or external stresses, imaging solutions compatible with the material system, and long time-scales required to create measurable experimental results. In this paper, we introduce a novel material system that allows for easy and fast visualization of GBM. A drop of liquid metal eutectic gallium indium (eGaIn) placed on indium foil will penetrate along grain boundaries, decreasing the internal stresses at grain boundary interfaces and enabling rapid GBM on the order of minutes. Due to the low melting temperature of indium, the entire process is observable without requiring special temperature-control equipment. Using a scanning electron microscope, the GBM of several grains of indium can be observed at a high resolution simultaneously. The value of the material choice and visualization process is shown by measuring the motion as a function of curvature for several grain boundaries
Non-thermal radio emission from O-type stars. IV. Cyg OB2 No. 8A
We study the non-thermal radio emission of the binary Cyg OB2 No. 8A, to see
if it is variable and if that variability is locked to the orbital phase. We
investigate if the synchrotron emission generated in the colliding-wind region
of this binary can explain the observations and we verify that our proposed
model is compatible with the X-ray data. We use both new and archive radio data
from the Very Large Array (VLA) to construct a light curve as a function of
orbital phase. We also present new X-ray data that allow us to improve the
X-ray light curve. We develop a numerical model for the colliding-wind region
and the synchrotron emission it generates. The model also includes free-free
absorption and emission due to the stellar winds of both stars. In this way we
construct artificial radio light curves and compare them with the observed one.
The observed radio fluxes show phase-locked variability. Our model can explain
this variability because the synchrotron emitting region is not completely
hidden by the free-free absorption. In order to obtain a better agreement for
the phases of minimum and maximum flux we need to use stellar wind parameters
for the binary components which are somewhat different from typical values for
single stars. We verify that the change in stellar parameters does not
influence the interpretation of the X-ray light curve. Our model has trouble
explaining the observed radio spectral index. This could indicate the presence
of clumping or porosity in the stellar wind, which - through its influence on
both the Razin effect and the free-free absorption - can considerably influence
the spectral index. Non-thermal radio emitters could therefore open a valuable
pathway to investigate the difficult issue of clumping in stellar winds.Comment: 19 pages, 10 figures, accepted by A&
The NIKA instrument: results and perspectives towards a permanent KID based camera for the Pico Veleta observatory
The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to
millimetric astronomy. In 2009 it was the first multiplexed KID camera on the
sky; currently it is installed at the focal plane of the IRAM 30-meters
telescope at Pico Veleta (Spain). We present preliminary data from the last
observational run and the ongoing developments devoted to the next NIKA-2
kilopixels camera, to be commissioned in 2015. We also report on the latest
laboratory measurements, and recent improvements in detector cosmetics and
read-out electronics. Furthermore, we describe a new acquisition strategy
allowing us to improve the photometric accuracy, and the related automatic
tuning procedure.Comment: 24th International Symposium on Space Terahertz Technology, ISSTT
2013, April 8 to 10, 2013, Groningen, the Netherland
Latest NIKA results and the NIKA-2 project
NIKA (New IRAM KID Arrays) is a dual-band imaging instrument installed at the
IRAM (Institut de RadioAstronomie Millimetrique) 30-meter telescope at Pico
Veleta (Spain). Two distinct Kinetic Inductance Detectors (KID) focal planes
allow the camera to simultaneously image a field-of-view of about 2 arc-min in
the bands 125 to 175 GHz (150 GHz) and 200 to 280 GHz (240 GHz). The
sensitivity and stability achieved during the last commissioning Run in June
2013 allows opening the instrument to general observers. We report here the
latest results, in particular in terms of sensitivity, now comparable to the
state-of-the-art Transition Edge Sensors (TES) bolometers, relative and
absolute photometry. We describe briefly the next generation NIKA-2 instrument,
selected by IRAM to occupy, from 2015, the continuum imager/polarimeter slot at
the 30-m telescope.Comment: Proceedings of Low Temperature Detectors 15 (LTD-15), Pasadena, June
201
Detection of the tSZ effect with the NIKA camera
We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect
from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors)
based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic
Microwave Background) spectrum produced by the inverse Compton interaction of
CMB photons with the hot electrons of the ionized intra-cluster medium. The
massive, intermediate redshift cluster RX J1347.5-1145 has been observed using
NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging
camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies
of the superconducting resonators are shifted by mm-wave photons absorption.
This tSZ cluster observation demonstrates the potential of the next generation
NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta
(Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at
240GHz, providing in that band also a measurement of the linear polarization.
NIKA2 will be commissioned in 2015.Comment: SF2A Proceedings 201
High resolution SZ observations at the IRAM 30-m telescope with NIKA
High resolution observations of the thermal Sunyaev-Zel'dovich (tSZ) effect
are necessary to allow the use of clusters of galaxies as a probe for large
scale structures at high redshifts. With its high resolution and dual-band
capability at millimeter wavelengths, the NIKA camera can play a significant
role in this context. NIKA is based on newly developed Kinetic Inductance
Detectors (KIDs) and operates at the IRAM 30m telescope, Pico Veleta, Spain. In
this paper, we give the status of the NIKA camera, focussing on the KID
technology. We then present observations of three galaxy clusters: RX
J1347.5-1145 as a demonstrator of the NIKA capabilities and the recent
observations of CL J1226.9+3332 (z = 0.89) and MACS J0717.5+3745 (z = 0.55). We
also discuss prospects for the final NIKA2 camera, which will have a 6.5
arcminute field of view with about 5000 detectors in two bands at 150 and 260
GHz
NIKA 2: next-generation continuum/polarized camera at the IRAM 30 m telescope and its prototype
NIKA 2 (New Instrument of Kids Array) is a next generation continuum and
polarized instrument successfully installed in October 2015 at the IRAM 30 m
telescope on Pico-Veleta (Granada, Spain). NIKA 2 is a high resolution
dual-band camera, operating with frequency multiplexed LEKIDs (Lumped Element
Kinetic Inductance Detectors) cooled at 100 mK. Dual color images are obtained
thanks to the simultaneous readout of a 1020 pixels array at 2 mm and 1140 x 2
pixels arrays at 1.15 mm with a final resolution of 18 and 12 arcsec
respectively, and 6.5 arcmin of Field of View (FoV). The two arrays at 1.15 mm
allow us to measure the linear polarization of the incoming light. This will
place NIKA 2 as an instrument of choice to study the role of magnetic fields in
the star formation process. The NIKA experiment, a prototype for NIKA 2 with a
reduced number of detectors (about 400 LEKIDs) and FoV (1.8 arcmin), has been
successfully operated at the IRAM 30 telescope in several open observational
campaigns. The performance of the NIKA 2 polarization setup has been
successfully validated with the NIKA prototype.Comment: 5 pages, 4 figures, proceeding for the conference: Extragalactic
radio surveys 201
Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71
The determination of the thermodynamic properties of clusters of galaxies at
intermediate and high redshift can bring new insights into the formation of
large-scale structures. It is essential for a robust calibration of the
mass-observable scaling relations and their scatter, which are key ingredients
for precise cosmology using cluster statistics. Here we illustrate an
application of high resolution arcsec) thermal Sunyaev-Zel'dovich (tSZ)
observations by probing the intracluster medium (ICM) of the \planck-discovered
galaxy cluster \psz\ at redshift , using tSZ data obtained with the
NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the
IRAM 30-meter telescope. We deproject jointly NIKA and \planck\ data to extract
the electronic pressure distribution from the cluster core () to its outskirts () non-parametrically for the
first time at intermediate redshift. The constraints on the resulting pressure
profile allow us to reduce the relative uncertainty on the integrated Compton
parameter by a factor of two compared to the \planck\ value. Combining the tSZ
data and the deprojected electronic density profile from \xmm\ allows us to
undertake a hydrostatic mass analysis, for which we study the impact of a
spherical model assumption on the total mass estimate. We also investigate the
radial temperature and entropy distributions. These data indicate that \psz\ is
a massive ( M) cool-core cluster.
This work is part of a pilot study aiming at optimizing the treatment of the
NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at
intermediate and high redshifts. (abridged)Comment: 16 pages, 10 figure
NIKA2: a mm camera for cluster cosmology
Galaxy clusters constitute a major cosmological probe. However, Planck 2015
results have shown a weak tension between CMB-derived and cluster-derived
cosmological parameters. This tension might be due to poor knowledge of the
cluster mass and observable relationship.
As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.}
SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium
for low redshift clusters () high
resolution and high sensitivity SZ observations are needed. With both a wide
field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec
at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope
(Pico Veleta, Spain) is particularly well adapted for these observations. The
NIKA2 SZ observation program will map a large sample of clusters (50) at
redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of
galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m
telescope to cover the various configurations and observation conditions
expected for NIKA2.
- …